
 

 

CS103A Handout 05S 

Winter 2020  

Solutions for Week Five 
 

Problem One: Cardinality Concept Checks 

i. If A and B are sets, what is the formal definition of the statement |A| = |B|? 

There is a bijection f : A → B. 

ii. If A and B are sets, what is the formal definition of the statement |A| ≠ |B|? 

There no bijection f : A → B. Equivalently, any function f : A → B is not a bijection. 

 

Problem Two: Finding Functions 

i. Find a function f : ℕ → ℕ that is both injective and surjective. Prove it meets those criteria. 

One option is the identity function f(n) = n. This is injective: consider any natural numbers n₁ and n₂ where f(n₁) 

= f(n₂). Then by definition of f we see that n₁ = n₂, so f is injective. This function is also surjective: given any 

n∈ ℕ, we see that there is some m∈ ℕ (namely, n) such that f(m) = n. 

ii. Find a function g : ℕ → ℕ that is injective but not surjective. Prove it meets those criteria. 

One option is g(n) = 2n. This function is injective: consider any natural numbers n₁ and n₂ where g(n₁) = g(n₂). 

Then by definition of g we see that 2n₁ = 2n₂ , which in turn means that n₁ = n₂, so g is injective. However, g is 

not surjective. To see this, note that there is no m ∈ ℕ where f(m) = 1, since f(m) = 2m is always even and 1 is 

odd. 

iii. Find a function h: ℕ → ℕ that is not injective but is surjective. Prove it meets those criteria. 

One option is h(n) = ⌊ⁿ/₂⌋. This function is not injective: notice that h(0) = ⌊⁰/₂⌋ = 0 and that 

h(1) = ⌊¹/₂⌋ = 0. However, it is surjective. Given any n ∈ ℕ, notice that h(2n) = ⌊ ²ⁿ/₂ ⌋ = ⌊n⌋ = n. 

iv. Find a function k : ℕ → ℕ that's neither injective nor surjective. Prove it meets those criteria. 

One option is k(n) = 0. This function is not injective because k(0) = k(1) = 0. This function is also not surjective 

because there is no m ∈ ℕ such that f(m) = 1. 
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v. Based on your answers to these problems, explain why if you have a function m : A → B and you know 

that |A| = |B|, you cannot necessarily say anything about whether m is injective, surjective, or bijective. 

We know that |ℕ| = |ℕ|, but there are functions from ℕ to ℕ that are bijective, injective but not surjective, sur-

jective but not injective, and neither injective nor surjective. Therefore, just choosing a function f : ℕ → ℕ tells 

us nothing about ℕ even though we know |ℕ| = |ℕ|. 

 

Problem Three: ℵ₀ ± 1 

Now, let's define S to be the set ℕ – {0}. 

i. Briefly describe the set S in plain English. 

This is the set of all natural numbers except 0. 

ii. Find a way of pairing elements of S with elements of ℕ so that no elements are uncovered. 

Here’s one option: 

1 ↔ 0 

2 ↔ 1 

3 ↔ 2 

4 ↔ 3 

5 ↔ 4 

… 

iii. Based on your answer to part (vi) of this problem, define a bijection f : S → ℕ. 

One option is f(n) = n – 1. 

iv. Prove that the function you found in part (iii) of this problem is a bijection. Since the cardinality of S is 

ℵ₀ – 1, this proves that ℵ₀ – 1 =  ℵ₀. 

Proof: We will prove that |S| = |ℕ| by giving a bijection f : S → ℕ. Let g(n) = n – 1. We will prove that g is a 

bijection by proving that f is injective and surjective. 

To see that g is injective, consider any n₁, n₂ ∈ S where f(n₁) = f(n₂). We'll show that n₁ = n₂. To see this, note that 

since f(n₁) = f(n₂), we know that n₁ – 1 = n₂ – 1. This means that n₁ = n₂, as required. 

To see that f is surjective, consider any n ∈ ℕ. We need to show that there is some m ∈ S such that f(m) = n. If 

we choose m = n + 1, then f(m) = f(n + 1) = (n + 1) – 1 = n, as required. ■ 

 

 

 



3 / 7 

Let's have T be the set ℕ ∪  {★}, where ★ is some arbitrarily-chosen object that isn't a natural number. 

v. Briefly describe the set T in plain English. 

T is the set of all natural numbers, plus ★. 

vi. Find a way of pairing elements of T with elements of ℕ so that no elements are uncovered. 

Here’s one way to do this: 

★ ↔ 0 

0 ↔ 1 

1 ↔ 2 

2 ↔ 3 

… 

vii. Based on your answer to part (ii) of this problem, define a bijection g : S → ℕ. 

One possible function for the above pairing is shown here: 

𝑔(𝑛) = { 0 if 𝑛 =★

𝑛 + 1 otherwise
 

viii. Prove that the function you found in part (iii) of this problem is a bijection. Since the cardinality of T is 

ℵ₀ + 1, this proves that ℵ₀ + 1 = ℵ₀. 

Proof: Consider the function g : T → ℕ defined as follows: 

𝑔(𝑛) = { 0 if 𝑛 =★

𝑛 + 1 otherwise
 

We will prove that g is a bijection by showing it is injective and surjective, from which we can conclude that |T| 

= |ℕ|. 

To see that g is injective, consider any n₁, n₂ ∈ T where n₁ ≠ n₂. We will prove g(n₁) ≠ g(n₂). Since 

n₁ ≠ n₂, at most one of n₁ and n₂ can be ★. We consider two cases: 

 Case 1: Neither n₁ = ★ nor n₂ = ★. Then g(n₁) = n₁ + 1 and g(n₂) = n₂ + 1, and since n₁ ≠ n₂, 

   we see n₁ + 1 ≠ n₂ + 1. Thus g(n₁) ≠ g(n₂), as required. 

 Case 2: Exactly one of n₁ and n₂ is ★. Without loss of generality, assume that n₁ = ★ and that 

   n₂ ≠ ★. Then g(n₁) = 0 and g(n₂) = n₂ + 1. Since n₂ ∈ ℕ and f(n₂) = n₂ + 1, we can see 

   that g(n₂) = n₂ + 1 ≥ 1 > 0 = g(n₁), and so g(n₁) ≠ g(n₂), as required. 

In both cases we see g(n₁) ≠ g(n₂), so g is injective, as required. 

To see that g is surjective, consider any n ∈ ℕ. We will prove there is at least one m ∈ T such that g(m) = n. If n 

= 0, then we can take m = ★, since g(m) = g(★) = 0 = n. Otherwise, we know that n > 0. This means n ≥ 1, and 

so n – 1 is also a natural number. Taking m = n – 1 then guarantees that g(m) = g(n – 1) = (n – 1) + 1 = n, as re-

quired. Thus g is surjective. ■ 
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Problem Four: Graph Theory Concept Checks 

Here's a quick review of our concepts from graph theory. 

i. What is an undirected graph? What is a directed graph? 

An undirected graph is a set of nodes and a set of edges, where each edge is an unordered pair of elements 

drawn from the set of nodes. Formally, an undirected graph is a pair G = (V, E) where E is a set of unordered 

pairs whose elements are drawn from V. 

A directed graph is a set of nodes and a set of edges, where each edge is a directed edge from one node to an-

other. Formally, a directed graph is a pair G = (V, E) where E is a set of ordered pairs whose elements are drawn 

from V. 

ii. What does it mean for two nodes to be adjacent in a graph? 

Two nodes are adjacent if they're linked by an edge. Formally, if G = (V, E) is a graph, then nodes u, v ∈ V are 

adjacent if {u, v} ∈ E. 

iii. What is a path in a graph? What is a simple path in a graph? 

A path in a graph is a series of nodes where any two nodes in the path are adjacent. A simple path is one that 

doesn't repeat any nodes or edges. 

iv. What is a cycle in a graph? What is a simple cycle in a graph? 

A cycle in a graph is a path that starts and ends at the same node. 

v. What does it mean for two nodes to be connected in a graph? 

Two nodes are connected if there's a path from the first node to the second. 

vi. Is it possible for two nodes in a graph to be adjacent but not connected? 

No, that's not possible, because the single edge linking those nodes forms a path between them, making them 

connected. 

vii. Is it possible for two nodes in a graph to be connected but not adjacent? 

Yes. Consider a graph consisting of three nodes linked in a line. The first and last node on the line are connected 

(there's a path between them) but not adjacent. 
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viii. What does it mean for a graph G to be connected? 

A graph G is connected if for any two nodes in G, those nodes are connected. 

ix. What is a connected component in a graph? 

A connected component in a graph is a set of nodes in the graph where (1) the set is nonempty, (2) any two 

nodes in the set are connected, and (3) any node in the set is not connected to any node outside the set. 

x. How many connected components does each node in a graph belong to? 

Each node in a graph belongs to exactly one connected component in that graph. 

xi. What is a planar graph? 

A planar graph is a graph that can be drawn in two dimensions with no edges crossing. 

xii. What is a k-vertex-coloring of a graph? 

A k-vertex-coloring of a graph is a way of coloring each node in the graph one of k different colors such that no 

two adjacent nodes are the same color (or, equivalently, so that each edge's endpoints are different colors.) 

xiii. What does the notation χ(G) mean? 

This is the chromatic number of G, the minimum value of k such that a k-vertex-coloring exists for G. 

xiv. What is meant by the degree of a node in a graph? 

The degree of a node in a graph is the number of edges touching it – equivalently, it's the number of nodes it's 

adjacent to. 
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Problem Five: Graph Coloring 

i. Give an example of a 2-colorable graph where some node has degree seven. Briefly justify why your 

graph meets these criteria; no proof is necessary. 

Consider a graph with nodes {1,2,3,4,5,6,7,8} where node 1 is adjacent to every other node (and there are no 

other edges). This graph is 2-colorable because we can color node 1 red and every other node blue. Additionally, 

the node 1 has degree seven. 

ii. Generalize your answer from part (i) by describing how, for any n ≥ 0, you can build a 2-colorable 

graph where some node has degree at least n. This shows that there is no direct connection between the maxi-

mum degree of a node in a graph and the chromatic number of that graph. 

One option is a star graph consisting of a central node connected to n peripheral nodes each are only adjacent to 

the central node. This is 2-colorable because we can color the central node blue and every other node red. The 

central node in this graph has degree n. 

iii. Give an example of a 2-colorable graph where every node has degree three. Briefly justify why your 

graph meets these criteria; no proof is necessary. 

One option is the utility graph from lecture. It's 2-colorable (color all of the nodes on the top red and all the 

nodes on the bottom blue), and every node has degree three. 

iv. Generalize your answer from part (iii) by describing how, for any n ≥ 0, you can build a 2-colorable 

graph where every node has degree at least n. This shows that there is no direct connection between the mini-

mum degree of a node in the graph and the chromatic number of that graph. 

One option is complete bipartite graphs. Given n ≥ 0, build a graph of 2n nodes split into two groups of equal 

size. Link each node in each half with each node in the other half. Every node has degree n and the graph is 2-

colorable: we can color one of the halves blue and the other half red. 

v. Give an example of a graph where every node has degree two but which is not 2-colorable. Briefly jus-

tify why your graph meets these criteria; no proof is necessary. 

Consider a cycle of three nodes. If we try to 2-color it, we'll have to assign the same color to two different 

nodes, which will be a problem because all nodes are connected to one another. However, it is 3-colorable be-

cause we can give each node its own color. 
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vi. Generalize your answer from part (v) by describing how, for any n ≥ 0, you can build a connected graph 

with at least n nodes where every node has degree two but which is not 2-colorable. This shows that each part of 

a graph can look 2-colorable even though the graph as a whole is not. 

Consider a cycle with 2n + 3 nodes. This graph is not 2-colorable. To see this, fix any node in the cycle. The 

colors of the nodes going around both halves of the cycle must alternate from this color. However, when the 

halves meet in the middle, each half of the cycle will have passed through n+1 nodes, so the nodes at the meet-

ing point must have the same color. If we use three colors, though, we can color the nodes in the cycle by as-

signing one of these two adjacent nodes the unused third color. 

 

Problem Six: The Pigeonhole Principle 

Suppose you pick 11 numbers from the list 1, 2, 3, 4, 5, …, 20. Prove that you must have chosen a pair of num-

bers whose difference is 10. 

Proof: Consider the ten “buckets” {1, 11}, {2, 12}, ..., {10, 20}. There are ten buckets here. If we choose elev-

en numbers from the list 1, 2, 3, ..., 20, then if we distribute those numbers across the buckets then, each number 

belongs to exactly one bucket, the pigeonhole principle at least two of the numbers will land in the same bucket. 

By construction, the two numbers in each bucket differ by exactly 10, so our list must contain a pair whose dif-

ference is 10. ■ 


