

Regular Languages

Oreo Sandwiches

For simplicity, let’s just use a single
character for the “cream” part of the

Oreo :)

For simplicity, let’s just use a single
character for the “cream” part of the

Oreo :)

● Let Σ = { O, R }

Oreo Sandwiches

● Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the frst and last
character of w are the same }

Oreo Sandwiches

● Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the frst and last
character of w are the same }

ORO ∈ L
●

 ROOOR ∈ L
OROORORRO ∈ L

OR ∉ L
●

 OOOOOR ∉ L
RORORORO ∉ L

Designing DFAs

● States – pieces of information
● What do I have to keep track of in the

course of fguring out whether a string is in
this language?

● Transitions – updating state
● From the state I’m currently in, what do I

know about my string? How would reading
this character change what I know?

An Analogy

BobAlice

961820

Imagine a scenario where Bob is thinking of a
string and Alice has to fgure out whether that
string is in a particular language

L = { w is divisible by 5 }

An Analogy

BobAlice

961820

The catch: Bob can only send Alice one character at
a time, and Alice doesn’t know how long the string
is until Bob tells her that he’s done sending input

L = { w is divisible by 5 }

9

An Analogy

BobAlice

961820

What does Alice need to remember
about the characters she’s receiving
from Bob?

L = { w is divisible by 5 }

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

6

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

6

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

. . .

An Analogy

BobAlice

961820

Eventually Bob gets to the end of his
string and sends Alice a signal that
he’s done sending input

L = { w is divisible by 5 }

0

<end>

An Analogy

BobAlice

961820

At this point, Alice just has to look at the
last digit she wrote down and if it’s a 5 or
0, Bob’s string belongs in the language

L = { w is divisible by 5 }

0

<end>

DFA Design Strategy

1. Answer the question “What do I have to keep track of in the
course of fguring out whether a string is in this language?”

We need to keep track of the last character.

2. Create a state that represents each possible answer to that
question.

The last character could be any digit 0-9. The states for 0 and 5
are accepting states

3. From each state, go through all of the characters and answer the
question “How would reading this character change what I know
about my string?” and draw transitions to the appropriate states.

Reading a character d should transition to the state representing “the
last character of the string is d”.

DFA Design Strategy

1. Answer the question “What do I have to keep track of in the
course of fguring out whether a string is in this language?”

We need to keep track of the last character.

2. Create a state that represents each possible answer to that
question.

The last character could be any digit 0-9. The states for 0 and 5
are accepting states.

3. From each state, go through all of the characters and answer the
question “How would reading this character change what I know
about my string?” and draw transitions to the appropriate states.

Reading a character d should transition to the state representing “the
last character of the string is d”.

L = { w is divisible by 5 }

Oreo Sandwiches

● Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the frst and last
character of w are the same }

What do I have to keep track of in the
course of fguring out whether a string is

in this language?

What do I have to keep track of in the
course of fguring out whether a string is

in this language?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

● We need to keep track of the very frst character
● And we need to keep track of the last character

we’ve read so that when we reach the end, we
can check whether the frst and last characters
were the same

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

Remember that each state should represent
a piece of information. We’ll annotate what

each state represents in blue.

Remember that each state should represent
a piece of information. We’ll annotate what

each state represents in blue.

ε

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start We need to keep track of the
very frst character, which
could either be an O or an R

ε

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start We need to keep track of the
very frst character, which
could either be an O or an R

frst
character
is O

ε

frst
character
is R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

O

If I’m in the start state and
I read an O, I should
transition to this state

frst
character
is R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

Likewise if I’m in the start
state and I read an R, I
should transition to this state

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

We also need to keep track of
the last character we’ve read

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

In either case, the last character
could either be an O or an R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

We’re allowed to have states that represent
multiple pieces of information – notice how if you
have the string O, it’s both true that the frst

character is an O and the last character is an O

We’re allowed to have states that represent
multiple pieces of information – notice how if you
have the string O, it’s both true that the frst

character is an O and the last character is an O

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

Where should the transitions go?

last
character
is R

last
character
is O

last
character
is O

last
character
is R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

As long as I’m still reading Os here,
I should stay in this state because
the last character read was an O

last
character
is R

last
character
is O

last
character
is O

last
character
is R

O

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

If I read an R, then I should
transition over here

last
character
is R

last
character
is O

last
character
is O

last
character
is R

O

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

O

R

Fill out the remaining transitions – for each state
go through the characters in Σ and ask yourself,
how would reading this character change what I

know about my string?

Fill out the remaining transitions – for each state
go through the characters in Σ and ask yourself,
how would reading this character change what I

know about my string?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Which of these states should
be accepting states?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

If we end up in this state, that means both
the frst and last character were Os, so we
should accept.

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

If we end up in this state, that means both
the frst and last character were Os, so we
should accept.

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Similarly, this state should also be
accepting because it means the frst and
last character were Rs

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Similarly, this state should also be
accepting because it means the frst and
last character were Rs

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

If we end up in this state, that means the
frst character was an O but the last
character was an R, so we should reject.

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

This is also a rejecting state. It represents
strings where the frst character was an R
but the last character was an O.

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Lastly, the start state is also a rejecting
state because we specifed that ε ∉ L

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Great question: why do we need these two states?Great question: why do we need these two states?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O

O

R

frst
character
is O

frst
character
is R

last
character
is O

last
character
is R

ε

R
Why can’t we have a DFA

that looks like this for this
language?

Why can’t we have a DFA
that looks like this for this

language?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Nonregular Languages

Approaching Myhill-Nerode

● The challenge in using the Myhill-Nerode
theorem is fnding the right set of strings.

● General intuition:
● Start by thinking about what information a

computer “must” remember in order to
answer correctly.

● Choose a group of strings that all require
diferent information.

● Prove that those strings are distinguishable
relative to the language in question.

An Analogy

BobAlice

string w

Imagine a scenario where Bob is thinking of a
string and Alice has to fgure out whether that
string is in a particular language

language L

An Analogy

BobAlice

string w

language L

The catch: Bob can only send Alice one character at
a time, and Alice doesn’t know how long the string
is until Bob tells her that he’s done sending input

An Analogy

BobAlice

string w

language L

What does Alice need to remember
about the characters she’s receiving
from Bob?

An Analogy

BobAlice

961820

What does Alice need to remember
about the characters she’s receiving
from Bob?

L = { w is divisible by 5 }

An Analogy

BobAlice

961820

What does Alice need to remember
about the characters she’s receiving
from Bob?

L = { w is divisible by 5 }

Initially it seems like Alice has to remember the whole number
that Bob is sending to her, but we only care about divisibility
by 5 here so we can get away with remembering a lot less.

Initially it seems like Alice has to remember the whole number
that Bob is sending to her, but we only care about divisibility
by 5 here so we can get away with remembering a lot less.

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

0

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

9The number that Bob is thinking of could get unboundedly
large, but the size of what Alice needs to remember remains

constant (fnite).

The number that Bob is thinking of could get unboundedly
large, but the size of what Alice needs to remember remains

constant (fnite).

An Analogy

BobAlice

aaabbb

Let’s contrast this with one of the non-
regular languages we saw in class:

L = { anbn | n ∈ ℕ }

An Analogy

BobAlice

aaabbb

Alice needs to remember how many a’s she’s
seen so far, since she needs to verify that the
number of b’s matches

L = { anbn | n ∈ ℕ }

An Analogy

BobAlice

aaabbb

Alice needs to remember how many a’s she’s
seen so far, since she needs to verify that the
number of b’s matches

L = { anbn | n ∈ ℕ }

As the size of Bob’s string gets larger, the amount of memory
Alice needs also increases. Since Bob’s string could get

unboundedly large, we need infnite memory.

As the size of Bob’s string gets larger, the amount of memory
Alice needs also increases. Since Bob’s string could get

unboundedly large, we need infnite memory.

An Analogy

BobAlice

string w

language L

Key insight: if Alice has to remember
infnitely many things, or one of infnitely
many possibilities, the language is
probably not regular

Context-Free Grammars

Storing Information in
Nonterminals

● Key idea: Diferent non-terminals should
represent diferent states or diferent types of
strings.
● For example, diferent phases of the build, or

diferent possible structures for the string.
● Think like the same ideas from DFA/NFA

design where states in your automata
represent pieces of information.

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● Examples:

ε ∈ L a ∉ L

abb ∈ L b ∉ L

bab ∈ L ababab ∉ L

aababa ∈ L aabaaaaaa ∉ L

bbbbbb ∈ L bbbb ∉ L

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● Examples:

ε ∈ L a ∉ L

a bb ∈ L b ∉ L

b ab ∈ L ab abab ∉ L

aa baba ∈ L aab aaaaaa ∉ L

bb bbbb ∈ L bbbb ∉ L

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 1:

Strings in this
language are either:
the frst third is as or
the frst third is bs.

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 2:

Amongst these
strings, for every a I
have in the frst third,
I need two other
characters in the last
two thirds.

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 2:

Amongst these
strings, for every a I
have in the frst third,
I need two other
characters in the last
two thirds.

This pattern of “for every x I
see here, I need a y

somewhere else in the string”
is very common in CFGs!

This pattern of “for every x I
see here, I need a y

somewhere else in the string”
is very common in CFGs!

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

A → aAXX | ε X → a | b

Observation 2:

Amongst these
strings, for every a I
have in the frst third,
I need two other
characters in the last
two thirds.

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

A → aAXX | ε X → a | b

Here the nonterminal A represents “a
string where the frst third is a’s”
and the nonterminal X represents

“any character”

Here the nonterminal A represents “a
string where the frst third is a’s”
and the nonterminal X represents

“any character”

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

A → aAXX | ε X → a | b

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

B → bBXX | ε X → a | b

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

Overall strings in this language either
follow the pattern of A or B.

Overall strings in this language either
follow the pattern of A or B.

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

A represents “strings where the frst
third is a’s”

A represents “strings where the frst
third is a’s”

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

B represents “strings where the frst
third is b’s”

B represents “strings where the frst
third is b’s”

Storing Information in
Nonterminals

● Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0
and all the characters in the frst third of w are
the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b X represents “either an a or a b”X represents “either an a or a b”

