

There is something going on in the world of AI

[suspense]

Self Driving Cars

Computers Making Art

The Last Remaining Board Game

Early Optimism 1950

1952

1955 Axioms $\models C$ ATP System (theorem prover) Yes No (proof/ **Timeout** answer)

Computer Vision

Piech + Sahami, CS106A, Stanford University

Classification

Classification

Classification

* It doesn't have to be correct all of the time

Piech + Sahami, CS106A, Stanford University

Identifying Cats

```
Here's one way you might code this...
def is cat(image):
  if contains two eyes(image):
    if has whiskers(image):
      if has_pointy_ears(image):
         return True
  return False
```


Identifying Cats

```
Here's one way you might code this...
def is cat(image):
  if not contains two eyes(image):
    return False
  if not has whiskers(image):
    return False
  if not has pointy ears(image):
    return False
  return True
```


Some Tricky Cases

Great idea inspired by biology

Some Inputs are More Important

Artificial Neuron

```
# calculate the activation of a neuron
def activate(weights_list, inputs_list):
   n = len(inputs_list)
   weighted_sum = 0
   for i in range(n):
      weighted_sum += weights_list[i] * inputs_list[i]
   return squash(weighted_sum)
# the sigmoid function forces a value to be between 0 and 1
def squash(value):
   return 1 / (1 + math.exp(-value));
```


Artificial Neuron

```
# calculate the activation of a neuron
def activate(weights_list, inputs_list):
    n = len(inputs_list)
    # using list comprehensions
    weighted = [weights_list[i] * inputs_list[i] for i in range(n)]
    weighted_sum = sum(weighted)
    return squash(weighted_sum)
```

```
# the sigmoid function forces a value to be between 0 and 1
def squash(value):
    return 1 / (1 + math.exp(-value));
```


Biological Basis for Neural Networks

A neuron

Your brain

Actually, it's probably someone else's brain

Demonstration

Visualize the Weights

Training set: Aligned images of faces.

Where is this useful?

A machine learning algorithm performs **better than** the best dermatologists.

Developed this year, at Stanford.

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." *Nature* 542.7639 (2017): 115-118.

Understanding Students

- 1. How to make your own project
- 2. What other languages look like
 - 3. Deep Learning in Python