Variables
Chris Piech
CS106A, Stanford University
New Ability

Write a program that can turn a measurement of C14 into an estimate of age.

Radioactive molecule = C14
Halflife = 5730 years
C14 in living organisms = 13.6 dpm

What is the amount of C14 remaining in your sample: 10.2
Your sample is 2378.0 years old.
Review: Decomposition

1. Each method solves one “problem”
2. Methods should have good names
3. Comment each of your methods
4. Length of methods should be < 15 lines
5. Methods should ideally be generalizable
See You Later!

I will miss you.

Enjoy Java!

See you on the midterm 😭.
Java

Piech, CS106A, Stanford University
Today’s Goal

1. How do you make a box?
2. How do you see what is in a box?
3. What can you put in a box?
4. How do you change what is in a box?
Two Example Programs

This program adds two numbers.
Enter n1: 17
Enter n2: 25
The total is 42.

Programming is Awesome!
Types of Programs

Program

Karel Program

SuperKarel Program

Console Program

Graphics Program
import acm.program.*;

public class HelloProgram extends ConsoleProgram {
 public void run() {
 println("hello, world");
 }
}

First Console Program: Hello World
You had me at "Hello, world"
class Add2Integers extends ConsoleProgram {
 public void run() {
 println("This program adds two numbers.");
 int n1 = readInt("Enter n1: ");
 int n2 = readInt("Enter n2: ");
 int total = n1 + n2;
 println("The total is " + total + ".");
 }
}

<table>
<thead>
<tr>
<th>n1</th>
<th>n2</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>25</td>
<td>42</td>
</tr>
</tbody>
</table>

This program adds two numbers.
Enter n1: 17
Enter n2: 25
The total is 42.
Today’s Route

The River of Variables

Access → Assign → Modify

Variables

You are here

Examples

Piech, CS106A, Stanford University
Programs are control flow and variables
What is a variable?
[suspense]
Variables are Like Boxes
My computer has space for about 2 billion boxes
Three Properties

name

descendants

- age

value: 29

parent

value

descendants

- type

(contains an int)
int age = 29;
Making a New Variable

```plaintext
int age = 29;
```

type | **name** | **Initial value**
When a line starts with a variable type, it is creating a new variable ...aka a box.

Example:

```
int myBox = 5;
```
// integer values
int num = 5;

// real values
double fraction = 0.2;

// letters
char letter = 'c';

// true or false
boolean isLove = true;

* Why is it called a double?
Double: How Much Do I Weigh?

* Answers could be real valued numbers
Int: How Many Children Do I Have?

* It is weird to say something like 1.7
public void run() {

 // integer values
 int age = 29;

 // real values
 double weight = 180.2;

}
Can you access the value in a variable (aka box)?
Outputting Variable Value

// creates a variable called // age with the value 29.
int age = 29;

// puts the value of the age // variable on the screen.
println(age);

* Fun fact. Chris turns 30 this year. He is young at heart.
// creates a variable called
// age with the value 29.
int age = 29;

// puts the following on the
// screen:
// age is <value>
println("age is: " + age);

* Fun fact. Chris turns 30 this year. He is young at heart.
What data can you put in a variable (aka box)?
class Add2Integers extends ConsoleProgram {
 public void run() {
 println("This program adds two numbers.");
 int n1 = readInt("Enter n1: ");
 int n2 = readInt("Enter n2: ");
 int total = n1 + n2;
 println("The total is " + total + ".");
 }
}

This program adds two numbers.
Enter n1: 17
Enter n2: 25
The total is 42.
Making a New Variable

```
int myBox = user input;
```

Type: int

Name: myBox

Initial Value: user input
Making a New Variable

\[
\text{type} \quad \text{name} \\
\text{int} \quad \text{myBox} = \text{expression};
\]

Initial value
// Prompts user for a whole number. Stores result in a variable (aka a box)
int kids = readInt("How many children?");

// Prompts user for a decimal number. Stores result in a variable (aka a box)
double tip = readDouble("Tip? ");

// Haven’t you ever wondered, who was the first person to eat a carrot???
boolean edible = readBoolean("Subject alive?");
class Add2Integers extends ConsoleProgram {
 public void run() {
 println("This program adds two numbers.");
 int n1 = readInt("Enter n1: ");
 int n2 = readInt("Enter n2: ");
 int total = n1 + n2;
 println("The total is " + total + ".");
 }
}

<table>
<thead>
<tr>
<th>n1</th>
<th>n2</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>25</td>
<td>42</td>
</tr>
</tbody>
</table>
Binary Operators

+ Addition
– Subtraction
* Multiplication
/ Division
% Remainder

See you another day, tio.
Learn by examples
Order of Operation

// Mult before addition first!
int result = 4 + 2 * 3; // 10

// Left to right!
int sum = 1 + 2 + (3 * 4); // 15

<table>
<thead>
<tr>
<th>Priority</th>
<th>Operator</th>
<th>Tie breaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest</td>
<td>()</td>
<td>Left to right</td>
</tr>
<tr>
<td>Middle</td>
<td>* /</td>
<td>Left to right</td>
</tr>
<tr>
<td>Lowest</td>
<td>+ -</td>
<td>Left to right</td>
</tr>
</tbody>
</table>
What do you think this does?

```
// creates a variable called success rate
double successRate = 1 / 2;
```
// creates a variable called
// success rate
double successRate = 1 / 2;

0.0
All *binary operators* result in a value (like a temporary variable) which *has a type*. You need to know what type that will be.

Most important example:

```
int / int results in an int
```
Resulting Type

\[\text{int} \div \text{int} \] results in an \text{int}

\[\text{double} \times \text{double} \] results in a \text{double}

\[\text{int} + \text{double} \] results in a \text{double}
Resulting Type of Binary Expression

All *binary operators* result in a value (like a temporary variable) which *has a type*. The general rule is: operations always return the *most expressive* type:

Expressive hierarchy:

\[
\text{boolean} < \text{char} < \text{int} < \text{double}
\]

Example:

\[
\text{int} / \text{double}
\]
results in a *double*
Even more examples...
Pitfalls of Integer Division

Convert 100° Celsius temperature to its Fahrenheit equivalent:

```java
double c = 100;
double f = 9 / 5 * c + 32;
```

The computation consists of evaluating the following expression:

The problem arises from the fact that both 9 and 5 are of type int, which means that the result is also an int.
You can fix this problem by converting the fraction to a `double`, either by inserting decimal points or by using a type cast:

```c
double c = 100;
double f = 9.0 / 5 * c + 32;
```

The computation now looks like this:
Practice

• $5 + \frac{3}{2} - 4 \quad \text{// 2}$
• $15 / 2.0 + 6 \quad \text{// 13.5}$
Can you change the value in a variable (aka box)?
Modifying a Variable

// creates a variable called age with the value 29.
int age = 29;

// this puts a new value in the box
age = 30;

// In what world does this make sense?
// Welcome to Java
age = age + 2;
1. A variable can't be used until it is assigned a value.

```java
int x;
println(x);  // Error: x has no value
```

2. You may not declare the same variable twice.

```java
int y = 3;
int y = 5;  // Error: y already exists
```

3. You may not use a variable until it is declared.

```java
z = 10;  // Error: z cannot be resolved
```
Today’s Route

- Variables
- Access
- Assign
- Modify
- Examples

You are here

The River of Variables
Today’s Route

Examples

You are here

The River of Variables

Variables

Modify

Assign

Access

You are here
Today’s Goal

1. How do you make a box?
2. How do you see what is in a box?
3. What can you put in a box?
4. How do you change what is in a box?
Practice 1: Receipt Program

• Let’s write a ConsoleProgram that calculates the tax, tip and total bill for us at a restaurant.
• The program should ask the user for the subtotal, and then calculate and print out the tax, tip and total.

What was the meal cost? $ 45.50
Tax: $3.64
Tip: $9.1
Total: $58.24
Write a program that can turn a measurement of C14 into an estimate of age.

Radioactive molecule = C14
Halflife = 5730 years
C14 in living organisms = 13.6 dpm

What is the amount of C14 remaining in your sample: 10.2
Your sample is 2378.0 years old.
Example: Carbon Dating

C14 = 1.2 dpm

C14 = 13.6 dpm
Carbon Dating Equation

\[\text{age} = \frac{\log\left(\frac{c}{13.6} \right)}{\log\left(\frac{1}{2} \right)} \times 5730 \]

- Amount of C14 in your sample
- Amount of C14 in a living sample
- Half life of C14
- Age of the sample
- \(\frac{1}{2} \) because of half life convention

* Some of these values are constants
** Use the function: `Math.log(num)`