Animation
Chris Piech
CS106A, Stanford University

This is Method Man. He is part of the Wu Tang Clan. 😊
Learning Goals

1. Feel more confident debugging
2. Write animated programs
You will be able to write Bouncing Ball
Goal
Great foundation
Move to Center
private void run() {
 // setup

 while(true) {
 // update world

 // pause
 pause(DELAY);
 }
}
Animation Loop

private void run() {
 // setup
 while(true) {
 // update world
 // pause
 pause(DELAY);
 }
}
The animation loop is a repetition of heartbeats

```java
private void run() {
    // setup
    while(true) {
        // update world
        // pause
        pause(DELAY);
    }
}
```
private void run() {
 // setup

 while (true) {
 // update world
 // pause
 pause(Delay);
 }
}

Each heart-beat, update the world forward one frame
private void run() {
 // setup

 while(true) {
 // update world

 // pause
 pause(DELAY);
 }
}
private void run() {
 // setup
 GRect r = makeRect();
 while (!isPastCenter(r)) {
 // update world
 r.move(1, 0);
 // pause
 pause(Delay);
 }
}
Bouncing Ball

Piech, CS106A, Stanford University
Milestone #1
Bouncing Ball

First heartbeat

Velocity: how much the ball position changes each heartbeat
Bouncing Ball

First heartbeat

The GOval `move` method takes in a change in x and a change in y
Bouncing Ball

Second heartbeat

\(vx\)

\(vy\)
Bouncing Ball

Third heartbeat

vx

vy
Bouncing Ball

What happens when we hit a wall?
Bouncing Ball

We have this velocity

\[\text{vy} \]

\[\text{vx} \]
Bouncing Ball

Our new velocity

\[\text{vy} = -\text{vy} \]

\[\text{vx} \]
Bouncing Ball

Seventh heartbeat
Bouncing Ball

Eighth heartbeat

Piech, CS106A, Stanford University
Bouncing Ball

Ninth heartbeat

Piech, CS106A, Stanford University
Bouncing Ball

We want this!
Bouncing Ball

This was our old velocity
Bouncing Ball

This is our new velocity

When reflecting horizontally: \(vx = -vx \)
When reflecting horizontally: $v_x = -v_x$
Bouncing Ball

Piech, CS106A, Stanford University
A Sticky Situation

The ball is above the bottom so we reverse its vy

The ball is below the bottom so we reverse its vy
Learning Goals

1. Feel more confident writing methods
2. Write animated programs