

YEAH:
Getting Your

C++ Legs
CS106B Summer '21

Assignment 1
Jin-Hee Lee & Grant Bishko

2

Real photo, taken January 2021 by a real person.

You can't can
sit go to YEAH
with us!

- Regina George

 What is YEAH???

Your Early Assignment Help
- Intended to help break down the assignment
- Better understand the what and the how of

what you'll be implementing
- Share key insights to help you!

3

Word on the street is that YEAH is very helpful even if you don't start
early, but we recommend that you do!

char the
Charmander

 More About YEAH:

Live sessions will be held on Wednesdays, 3pm PDT

- Come join us TODAY right after lecture!

4

Will be recorded for those who can't make the time,
but…

 Join us live!

With students at the
live session:

Without students at
the live session :(((

5

 Hello world!

Jin-Hee!!

Symbolic Systems, Music

Loves to sing and consume boba

Grant!!

Computer Science?? Music?? Symbolic
Systems?? Stay tuned! Grant would
also like to know!6

 Assignment 1 ~Logistics~

- Due Tuesday, June 29 at 11:59pm PDT
- Turn in on time for a small bonus
- Penalty-free grace period ends Thursday, July 1

at 11:59pm PDT
- Assignment must be completed individually

- Following the honor code, no shared code

7

Questions about logistics?

8

Off we go to get our C++ legs!

9

 Assignment 1

1. Perfect Numbers
2. Soundex Search

10

 Assignment 1

1. Perfect Numbers
2. Soundex Search

11

 Part 1: Perfect Numbers

12

Baby, you look
perfect tonight ♫

 Perfect Number

= 1 + 2 + 3
= 1 + 2 + 4 + 7 + 14

13

*Note: we do NOT include the integer itself.

Let's look at some code. 👀

14

 divisorSum()

15

 divisorSum()

16

 divisorSum()

17

 Exhaustive Algorithm

- An algorithm that tries all possible options
to find the desired information.

- divisorSum() checks every integer
starting from 1 to n, checking each
integer to see if it's perfect.

- We'll test how long this takes…

18

 Testing is the key to success!

19

CS106B PROGRAMS

 Testing using SimpleTest

We'll focus on 4 types of tests:

EXPECT tests that the provided predicate is true.

EXPECT_EQUAL tests that the 2 provided
arguments are equal.

EXPECT_ERROR tests that, indeed, an error occurs
when running the provided code.

TIME_OPERATION times how long the provided
code takes to execute. 20

Trip's Example:

21

Testing!

Test example program written by Trip Master.

 TIME_OPERATION

- Takes 2 parameters: inputsize, operation
- Times and shows how long it takes to

perform the operation on inputsize
elements.

22

Questions about testing in 106B?

23

 Level Up: let's do better!

24

 Example time!

Let's unpack isPerfect(36)

Divisors of 36: 1, 2, 3, 4, 6, 9, 12, 18

Right now, the algorithm has to loop through
all numbers from 1 through (36 - 1).

But let's take a closer look at the divisors:

25

 Example time!

Let's unpack isPerfect(36)

Divisors of 36: 1, 2, 3, 4, 6, 9, 12, 18

 1, 2, 3, 4, 6, 9, 12, 18

 1, 2, 3, 4, 6, 9, 12, 18

 1, 2, 3, 4, 6, 9, 12, 18

26

 Example time!

Let's unpack isPerfect(36)

Divisors of 36: 1, 2, 3, 4, 6, 9, 12, 18

Since each divisor has a corresponding term
that multiplies to the product, we only have
to loop from 1 through sqrt(36)!

- [1], [2 and corresponding term], [3 and
corresponding term] …

27

Much smarter!

 smarterSum()

Your task: write

Tips:

- Use divisorSum() as a starting point
- Consider your edge cases

28

 What is an edge case?

An edge case occurs when working with an
extreme parameter.

For example, if you're working with ints, your
program should be able to handle oddball
inputs like 0, 1, -1.

With strings, a standard edge case is "".

29

 smarterSum()

Your task: write

Tips:

- Use divisorSum() as a starting point
- Consider your edge cases

- Typical int edge cases (previous slide)
- Is there anything special about the

square root?
- If so, how should we handle it?

30

Questions about smarterSum()?

31

 Level Up: even stronger!

32

 Mersenne Prime

- A prime number is one whose only divisors
are 1 and the number itself.

- A Mersenne prime is a prime number that
is one less than a power of two.

- 2^n - 1 for some integer n
- Example: 31 is prime and can be expressed

as 2^5 - 1. 31 is a Mersenne prime.

33

 Enter Euclid…

He discovered a cool relationship:

If 2^k - 1 is prime, then 2^(k-1)*(2^k - 1)
is a perfect number!

With this in mind…

34

Here is Euclid, helping us write
the first 106B assignment.
(300 BC)

 findNthPerfectEuclid()

Your task: write

For example, the call
findNthPerfectEuclid(3) would use
Euclid's method and return the 3rd perfect
number, which is 496.

35

 Euclid's Method

1. Start by setting k = 1.
2. Calculate m = 2^k - 1 (use C++ library function pow)
3. Determine whether m is prime or composite.

a. Recommended: writing a bool isPrime(long n)
helper function!

b. Exhaustive loop is fine for this algorithm.
4. If m is prime, then calculate 2^(k-1) * (2^k - 1).

(This is the associated perfect number.)
5. Increment k and repeat until you have found the nth

perfect number!
36

 Some comments from Euclid:

37

We are using long instead of int since these numbers
can get really big!

If you're on a Windows machine, you should be able to find
around 6 perfect numbers. On a Mac, you should be able to
find a few more!

- If you're interested, you can look up 32-bit systems
vs. 64-bit systems. Also, take CS107 :)

Questions about
findNthPerfectEuclid()?

38

Let’s breathe.

That was a lot of information!

39

 Assignment 1

1. Perfect Numbers
2. Soundex Search

40

- You will be writing a program that takes in a
last name and turns it into a soundex code
- Essentially a 4-digit pseudo-phonetic

representation of a last name
- Fun fact! The US census uses soundex codes!

Part 2a: Soundex()

41

 The Soundex Algorithm

“A Soundex code is a four-character string in
the form of an initial letter followed by three
digits, such as Z452. The initial letter of the
surname, and the three digits are drawn from
the sounds within the surname using the
Soundex algorithm.”

42

That’s the soundex code for Julie
Zelenski, a LEGEND of a Stanford CS
professor!

 The Soundex Algorithm

Lucky for us, the actual steps
to turn a last name into a
soundex code is pretty
straightforward!

Let’s take a look!

43

K600

 The Soundex Algorithm

1. Discard all non-letters from the surname
(dashes, spaces, apostrophes, etc.)

2. Encode each letter as a digit from the table to
the right

3. Coalesce adjacent duplicate digits from code
(222025 becomes 2025)

4. Replace first digit of code with first letter of the
original surname, converting to uppercase

5. Remove all zeros from the code
6. Make the code exactly 4 digits by padding with

zeros or truncating the excess
44

Let’s do one together!

 Example Surname: Master

Step 1: Discard all non-letters from the
surname (dashes, spaces, apostrophes, etc.)

Hint: use the isAlpha() function here!

Master → Master

(There are no non-letters!)

46

 Example Surname: Master

Step 2: Encode each letter as a digit from the
table

Master → 502306

47

 Example Surname: Master

Step 3: Coalesce adjacent duplicate digits
from code (222025 becomes 2025)

502306 → 502306

(No duplicate digits)

48

 Example Surname: Master

Step 4: Replace first digit of code with first
letter of the original surname, converting to
uppercase

502306 → M02306

Hint: Save the first character of the surname
right after step 1! (Here, we'd save 'M')

49

 Example Surname: Master

Step 5: Remove all zeros from the code

M02306 → M236

50

 Example Surname: Master

Step 6: Make the code exactly 4 digits by
padding with zeros or truncating the excess

M236

(already 4 digits!)

We are done!

51

 Example Surname: Master

Step 6: Make the code exactly 4 digits by
padding with zeros or truncating the excess

If we do need to pad/truncate, here are some
examples of what that would look like:

M2 → M200

M23613 → M236
52

Questions about the Soundex
algorithm?

53

 Short Answers!

As you complete the assignment, you will be
asked short answer questions.

These consist of things like:

- Calculate the soundex code for ____
- What is the soundex code for your own

last name?
- Game plan for writing the code!

54

 DECOMPOSE!!!!

You will be writing the code for the function:

string soundex(string s)

Which takes in a string (surname) and returns a
string (the soundex code).

But, calculating the soundex code for a name
is complicated! We STRONGLY RECOMMEND
DECOMPOSING this function into many helpers!

Hint: make a helper for each step of the process

 Why is decomposing helpful?

TESTING TESTING TESTING

If you decompose your code into many functions,
you will be able to test as you go, and pinpoint
any bugs to a specific step along the
soundex-encoding process!

Write tests for each helper function you create!
56

 Why is decomposing helpful?

They give you a buggy version of a
pre-decomposed function for you to fix!

(removeNonLetters)

See how helper functions make finding these
bugs much easier?

57

 Tips for part 2a: soundex()

- Lots of string/char work here!
- Note that in C++ a string is

represented by “” while a char uses ‘’
- Indexing into a string is going to be

super helpful here (like using str[i])
- In case you need to convert between

char/string, strlib.h has some helpful
functions!

58

 Tips for part 2a: soundex()

- Make sure your code is case insensitive, so
“Zelenski” → Z452 and “zElenSkI” → Z452

- Add your own tests
- If you ever need to convert to uppercase,

the Stanford library function:
toUpperCase(string s) will do that! So
will the standard C++ function
toupper(int c)

59

Takes in an integer?? Why?? ASCII !!! (a numeric
representation of characters) We will learn
much more about it throughout this course!

Questions about Soundex?

60

 Part 2b: Soundex Search

- Now it’s time to actually use the soundex()
function that we created!

61

 Part 2b: Soundex Search

You will be writing the function:
void soundexSearch(string filePath)

that allows the user to find the soundex code
for a given name, along with other names in the
database (represented by the filename filePath)
with the same soundex Code

62

 Part 2b: Soundex Search

Match this user interaction exactly!

63

This top line is
done for you!

 Part 2b: Soundex Search

You have been given the code that takes in a filePath
and reads it into a vector

- A Vector is just like a List (in Python) or an ArrayList (in Java).

64

 Part 2b: Soundex Search

Here’s what you will need to do (1/3):

- Repeatedly prompt the user to enter a surname
(while loop???) (the function getLine from
“simpio.h” will be super helpful here)

- Compute and print the soundex code for the
inputted surname

65

 Part 2b: Soundex Search

Here’s what you will need to do (2/3):

- Iterate through the vector of strings you’ve created
from filePath, compute the soundex code of each
name, and create a new vector of names that match
the soundex code you created

66

 Part 2b: Soundex Search

Here’s what you will need to do (3/3):

- Print the matches in sorted order
- vectors have a handy sort() function that you

can use -- v.sort() where v is the name of
your vector

- In order to print you can use the << operator
(like cout << vec << endl;)

- Repeat the steps from the past several slides until
the user indicates that they are done

67

 This is what it will look like!

68

 Tips for dealing with vectors!

Stolen from Trip
Master himself!

69

 Soundex Search Tips/Tricks :)

- Use getLine (from “simpio.h”) to get user input!
- To sort the names in the vector, just use

vectorName.sort()! No need to make things super
complicated for yourself

- You can cout (print) vectors just like you would
strings, and they will print just like you saw in the
example!

- Feel free to Google “Stanford String cpp” to find a
bunch of helpful functions you can use!

70

Questions about
Soundex / Soundex Search?

71

Final questions?

72

Best of luck --
you've got this!

