
YEAH A2:Fun with Collections
CS106B Summer '21
Assignment 2
Jin-Hee Lee & Grant Bishko

Assignment 2 ~Logistics~
A2 is due on Wednesday, July 7th at 11:59pm PT

Grace period until Friday, July 9th at 11:59pm PT

As with all assignments this quarter, your work is
individual (no sharing code!)

Assignment 2
1. Warmup

2. Maze

3. Search Engine

4. Beyond Algorithmic Analysis

Assignment 2
1. Warmup

2. Maze

3. Search Engine

4. Beyond Algorithmic Analysis

Warmups

YES!

Warmups
Welcome to the debugger!!

We hate bugs!

The QT Creator Debugger is a SUPER useful tool we can use to catch
bugs and poke around our code

How do we use the debugger? Great question!

Warmups
1) View ADTs in debugger

2) Test duplicateNegatives

3) Debug duplicateNegatives

4) Recognize a common ADT error in removeMatchPair

Responses for the warmups will all be written as short answers in
short_answer.txt

1) View ADTs in Debugger
1. Set a breakpoint on the beginning

of the first while loop
2. Run code in debug mode
3. Look at the variable pane
4. “Step Over” the code until the

stack s is <1 items>

2) Test DuplicateNegatives
duplicateNegatives intends to:

- Modify a Queue<int> to duplicate each negative number
- {3, -5, 10} → {3, -5, -5, 10}
- But it’s buggy!

3) Debug DuplicateNegatives
Now that you have fully tested the function, it is time to
debug it and fix the code!

- Should only take 1-2 lines of code to fix the problem
- Make sure you understand part 2 before doing this

warmup!!

4) Recognize common ADT Error in removeMatchPair
The function removeMatchPair is intended to modify a
Map<string, string> to remove any pair where the key is equal
to the value.

But, this error comes up when running some of the provided
tests!

4) Recognize common ADT Error in removeMatchPair
From Eunji and Jason:

“This means that the test did not fail because of a call to EXPECT() or
EXPECT_ERROR() failing”: Your code did not return a wrong answer! We use
EXPECT_EQUAL(yourReturnVal, actualAnswer) in our test cases to show that we want
yourReturnVal to equal actualAnswer; if EXPECT_EQUAL fails, it means yourReturnVal
does not equal actualAnswer so there’s a mistake in your code. That’s not what
happened here!

So what happened? “some code explicitly called the error() function.” means your
code crashed somewhere! This happens with illegal operations: index was out of
bounds, attempt to read a non-existent file, or modify a collection while iterating over
it, etc.

4) Recognize common ADT Error in removeMatchPair

1) First time: set breakpoint in test case, step into removeMatchPairs(), then step
over until you get to the crash. Note the line number of the crash

2) Second time: set breakpoint at the line of the crash, then examine state of
variables to answer the question

Assignment 2
1. Warmup

2. Maze

3. Search Engine

4. Beyond Algorithmic Analysis

Maze -- quick appreciation for Dylan O’Brien

Famous for running from
mazes. We will not run!

Maze -- we will solve it!

rip.

Maze -- we will be writing a program to solve one!

Stanford Collections
1. Grids
2. Stacks
3. Queues

https://web.stanford.edu/dept/cs_edu/cppdoc/Grid-class.html
https://web.stanford.edu/dept/cs_edu/cppdoc/Stack-class.html
https://web.stanford.edu/dept/cs_edu/cppdoc/Queue-class.html

Stanford Collections
1. Grids

a. grid.inBounds(row, col): Returns true if the specified row and
column position is inside the bounds of the grid

b. grid[row][col] or grid.get(row, col): returns value in at
the specified row and col

c. You will be dealing with Grid<bool> and some collection of
GridLocations

2. Stacks
3. Queues

https://web.stanford.edu/dept/cs_edu/cppdoc/Grid-class.html
https://web.stanford.edu/dept/cs_edu/cppdoc/Stack-class.html
https://web.stanford.edu/dept/cs_edu/cppdoc/Queue-class.html

Stanford Collections
1. Grids
2. Stacks

a. s.push(val) : pushes val onto the stack (adds it at the top)
b. s.pop(): removes the topmost (most recently added) value from

stack and returns it
c. s.peek() : returns the topmost (most recently added) value from

stack but does not remove it

3. Queues

https://web.stanford.edu/dept/cs_edu/cppdoc/Grid-class.html
https://web.stanford.edu/dept/cs_edu/cppdoc/Stack-class.html
https://web.stanford.edu/dept/cs_edu/cppdoc/Queue-class.html

Stanford Collections
1. Grids
2. Stacks
3. Queues

a. q.enqueue(val) : adds val to back of the queue
b. q.dequeue() : removes and returns the first item (top) in the

queue

https://web.stanford.edu/dept/cs_edu/cppdoc/Grid-class.html
https://web.stanford.edu/dept/cs_edu/cppdoc/Stack-class.html
https://web.stanford.edu/dept/cs_edu/cppdoc/Queue-class.html

Grid representation of a maze
- Maze is represented by a Grid<bool>

- true → open corridor
- false → wall

- GridLocation is what it sounds like, a location
on a grid:
- I am still confused???
- This isn’t a type I’ve seen before….?

GridLocation -- How to initialize, compare,
change

A Stack of GridLocations is a Path

S

E

 0 1 2 3 4 5 6

 0

 1

 2

 3

 4

Col #s

R
o
w

#
s

Stack<GridLocation> myPath =

A Stack of GridLocations is a Path

S

E

 0 1 2 3 4 5 6

 0

 1

 2

 3

 4

Col #s

R
o
w

#
s

Stack<GridLocation> myPath =

A Stack of GridLocations is a Path

S

E

 0 1 2 3 4 5 6

 0

 1

 2

 3

 4

Col #s

R
o
w

#
s

Stack<GridLocation> myPath =

myPath[3][2] → false

Maze -- three functions!
1) generateValidMoves()

2) checkSolution()

3) solveMaze()

generateValidMoves -- what are valid moves?

- Write a function that takes in a given maze, and a “cur”,
and returns a Set<gridLocation> of valid gridLocations
that “cur” can move to

- What makes a GridLocation valid?
- Either directly north, south, east, or west (N, S, E, W) of cur
- Only one "step" away from cur in the grid
- Is open corridor, not a wall (true, not false)
- Not out-of-bounds of the provided maze (hint: use grid.inBounds!)

- Write your own student tests!! You need 3-4 to make sure
your function works!

Maze -- three functions!
1) generateValidMoves()

2) checkSolution()

3) solveMaze()

Check a completed path to see if it works!

A given path is a valid solution if:
1) The path must start at the entry (upper left corner) of the maze

a) HINT: the entry is the LAST element of the path -- how can you check that
location? Remember path.pop() gives you the EXIT… is there a way to
check the entry without popping off the entire stack?? Think about when in
your code you want to check that the path starts at {0, 0}!!!

Check a completed path to see if it works!

A given path is a valid solution if:
1) The path must start at the entry (upper left corner) of the maze
2) The path must end at the exit (lower right corner) of the maze

a) Same idea here, how can you check where the path ends?

Check a completed path to see if it works!

A given path is a valid solution if:
1) The path must start at the entry (upper left corner) of the maze
2) The path must end at the exit (lower right corner) of the maze
3) Each location in the path is a valid move away from the previous location

a) HINT: call the helper function you already wrote to help confirm a move is
valid, rather than re-implement its logic!

b) HINT: you need to keep track of 2 GridLocations here…

Check a completed path to see if it works!

A given path is a valid solution if:
1) The path must start at the entry (upper left corner) of the maze
2) The path must end at the exit (lower right corner) of the maze
3) Each location in the path is a valid move away from the previous location
4) The path contains no loops, i.e. a location appears at most once in the path

a) HINT: determine a way to keep track of all the GridLocations you have
already seen/been to along your path!

It’s a void function… What do I actually do?
checkSolution will do nothing if the path that it is given works
and is a good solution!

HOWEVER, if you run into a problem (one of the 4 criteria failed in
the previous slides)

- Call an error which suggests that the path is faulty in some
way.

Again, write your own tests to check this!

Short Answers again!

Maze -- three functions!
1) generateValidMoves()

2) checkSolution()

3) solveMaze()

solveMaze()
We’ve generated valid moves, we’ve checked completed
paths to see if they complete the maze…

Now it’s time to solve the maze!

solveMaze()

- You will be writing a function that takes in a maze, and
returns a path (stack of GridLocations) to solve that maze!

- You will be using a Breadth-First-Search (BFS) to do so

We will be keeping track of many potential paths, until we find
the solution to our maze. Using a queue of paths:

Queue<Stack<GridLocation>>

solveMaze() pseudocode explained

Stack<GridLocation> myPath → has only one element in it, and that element is {0, 0}

enqueue myPath onto our full queue of potential solutions

solveMaze() pseudocode explained

solveMaze() pseudocode explained

Keep track of the locations you visit!

New potential solution!

Add graphics!

You need to call highlightPath()! Dw about drawGrid() we do that for you!

- Hint: it’s only one line of code!
- Call it every time you update the path (aka whenever you dequeue a

new candidate path)

Revisiting this graphic

Live-time
representation of a
BFS!

SO COOL.

Questions about Maze?

But we DID.
And we did it
with code.
Boom.

Assignment 2
1. Warmup

2. Maze

3. Search Engine

4. Beyond Algorithmic Analysis

Search Engine

Our Version of a Search Engine
- Each web page has a URL ("Uniform Resource

Locator")
- The URL is the page's unique ID
- We use a string to contain the body text of

the page

Our Tasks...
- Process the body text and populate the data

structure
- Search for pages that match a search query
- Allow the user to enter many search queries

and retrieve the matching web pages

Understanding a Database File
Lines are grouped into pairs:

- First line is the page URL
- Second line is that page's body text

represented as a single string

Example File: tiny.txt

{
{
{
{

Searching Efficiently
While that example file was tiny, we will be
searching through much bigger files.

Searching through each file on the web would take
eons!

So, we will be using an inverted index to search.

Inverted Index
Creates a mapping from content to locations.

Example: a science textbook's index

- You want to read about the mitochondria.
- The index tells you that you can find this word

on pages 71, 120.

Inverted Index
Creates a mapping from content to locations.

Example: a science textbook's index

- You want to read about the mitochondria.
- The index tells you that you can find this word

on pages 71, 120.

char the Charmander, back at it again with the notes on efficiency:

While processing the entire document or set of
documents might take a while, we have to do so to
create the inverted index.

Once it's been created, searching for words becomes a
breeze! AKA - well worth it.

Decomposition Time!

Part 1: cleanToken()
Our job is to write

- token: string of characters from the body text
- return value: a cleaned version

Part 1: cleanToken()
- Remove all punctuation from the beginning and end

of a token, but not from inside a token.
- "!wowwee!" → "wowwee"
- "wow!wee" → "wow!wee"

a. If a character c fulfills ispunct(c), it qualifies
as punctuation.

b. Paying attention to the beginning and the end of
the token

Part 1: cleanToken()
- If the token does not contain at least one letter,

return the empty string.
- "!@#..." → ""

a. At least 1 character c in token should fulfill
isalpha(c) for us to treat it as a valid word.

Part 1: cleanToken()
- Convert the token to lowercase before returning.

- "WAH" → "wah"

a. Check strlib.h to see which function converts a
string to lowercase!

b. Watch out: make sure you're never trying to
index into the empty string.

https://web.stanford.edu/dept/cs_edu/cppdoc/strlib.html

Part 2: gatherTokens()

Not that kind :(

Part 2: gatherTokens()
Our job is to write

- bodyText: body text from a single web page
- return value: all of the unique, cleaned tokens

that appear in the body text

Part 2: gatherTokens()
1. Tokenize the body text by whitespace

a. Use stringSplit()

2. Clean each token
a. Store each cleaned token in a set

i. Review: why is a set the ideal data structure to use here?

3. Return the set you've made!

https://web.stanford.edu/dept/cs_edu/cppdoc/strlib.html#Function:stringSplit

Any questions on our helper
functions cleanToken() and

gatherTokens()?

Part 3: buildIndex()

- dbfile: name of database file
- index: the map to be populated

- Key: token
- Value: the webpages on which this token is found
- Review: why is index passed by reference?

- return value: number of documents processed

Remember…

These lines come in 2s!

{
{
{
{

Part 3: buildIndex()
1. Read in contents of dbfile

a. Check the provided readMazeFile in
maze.cpp to see how to open a file and read
the contents into a vector!

b. You can reuse this code for buildIndex()

Part 3: buildIndex()
1. Read in contents of dbfile

2. Loop through the contents
a. Hint: think about how to best loop to look at

lines 2 at a time!

Part 3: buildIndex()
1. Read in contents of dbfile

2. Loop through the contents

3. After reading the line with the body text, gather
all unique tokens from that line
a. For each token, update the index map to show

that the token can be found on the page's URL

Any questions on buildIndex()?

INDEX

Part 4: findQueryMatches()
blah

- index: the inverted index map from tokens to
URLs

- query: what you'll be searching for
- return value: a set of all URLs on which that

query is found

Part 4: findQueryMatches()
blah

- index: the inverted index map from tokens to
URLs

- query: what you'll be searching for
- return value: a set of all URLs on which that

query is found

QUery
A query can be

a. A single search term
b. A compound sequence of multiple terms

Compound Queries
Multiple search terms are unioned by default.

- a valid match can be from any search term

If a search term starts with the modifier +, then the
matches for this term are intersected with existing
matches.

- a valid match must be a match for both terms

If a search term starts with the modifier -, then the
matches for this term are removed from existing
matches.

- a valid match for term B must NOT be a valid
match for term A

QUery
A query can be

a. A single search term
b. A compound sequence of multiple terms

- Search terms should be separated into tokens
using stringSplit()

Let's look at the examples on the spec:

Example Queries

Note: if there are multiple
operators, they should
simply be processed from
left to right, just like any
other query

Note on Compounds
Don't get too bogged down by the complex
compound queries!

Hint: regardless of the length of the query
sentence, you should be able to simplify the search
for a term to 3 cases.

Part 4: findQueryMatches()
Processing a search term before searching for it:

- Clean your token (the search term)
- Convert to lowercase

Part 4: findQueryMatches()
Assumptions we can safely make about the query:

- The query sentence is non-empty and will contain at least
1 search term

- If a search term has a modifier it will be the 1st character
in that search term

- A modifier will not appear on its own as a search
term

- The first search term in the query sentence will never
have a modifier

- No search term will clean to the empty string

Any questions on
findQueryMatches()?

Part 5: searchEngine()
blah

- dbfile: the name of the database file being used
for the search

Part 5: searchEngine()
1. Build the inverted index
2. Print how many web pages were processed to build

that index and how many total distinct words were
found

3. Enter a loop that asks the user for a query
4. For each query entered, find and print the matching

web pages' URLs
5. Understand that the empty string indicates the end

of the program

Part 5: searchEngine()
- You've done the hard work of creating robust helper

functions -- put them to use here!
- Prompting the user

- Should happen forever, unless the "" input
indicates that it should break

- Input, you say?
- Sounds like our practice using getLine() will

come in handy…

Any questions on Search Engine?

You've basically just made
Google, I guess.

Haha jk! Unless…

Assignment 2
1. Warmup

2. Maze

3. Search Engine

4. Beyond Algorithmic Analysis

Beyond Algorithmic Analysis…
Ethics are a fundamental component of CS
education.

We want to foster our ability to think critically
about the social impacts of computer programs
using the concepts we've discussed in class.

- Like Big-O analysis!

Beyond Algorithmic Analysis…
We'll leave the thinking here to you.

Really, we just want to see thoughtful responses
that show you've engaged with the questions and
that you are keeping ethics at the forefront of your
mind.

Final questions?

Go forth and have fun
with collections!

We hope you feel charged up!

