
YEAH A4:
Priority Queue
CS106B Summer '21
Jin-Hee Lee, Grant Bishko, Lauren Saue-Fletcher

First of all…

CONGRATULATIONS on finishing your first
Stanford mid-quarter diagnostic!

This is not easy stuff, and getting through it
is an accomplishment in itself.

We've come so far since we started with
smarterSum() :)

Everyone's Favorite: Logistics

Assignment 4 is due Tuesday, July 27 at
11:59 pm PDT
The grace period extends until Thursday,
July 29 at 11:59 pm PDT

Assignment 4

1. Warmup
2. PQ Sorted Array
3. PQ Client
4. PQ Heap

Assignment 4

1. Warmup
2. PQ Sorted Array
3. PQ Client
4. PQ Heap

Warmup

Bouncing Balls!
Fun!

Warmup

In this first part of the warmup, we'll learn
how to examine member variables in the
debugger pane.
This will look just like any other variable in
the pane -- and we've already had lots of
practice looking at these!

this

What is this?
(You'll find that this appears in the debugging
variables pane.)
this is a special variable that refers to the current
object that is executing the member function.
You can expand this (as you can any other variable)
and poke around to see the details of this Ball!

Warmup Poking around here

Conditional Breakpoints

Control-clicking on the red dot of a
breakpoint allows us to Edit breakpoint,
and set a Condition.

From here, you're allowed to specify a
conditional breakpoint: a breakpoint that
will only break if a given condition is true.

Conditional Breakpoints

Examining Array Memory

We can change the display format of the
variables pane to allow us to examine
array memory!
What are the initialized values for elements
that we haven't set?
What kind of errors get "caught" -- and in
what way?

Assignment 4

1. Warmup
2. PQ Sorted Array
3. PQ Client
4. PQ Heap

PQ Sorted Array

A priority queue is a queue that handles its
elements in order of priority.
This means that each element has its own priority.
In our assignment, we'll be using the DataPoint
struct:

Priority

IMPORTANT!
In this assignment,
SMALLER INTEGER VALUE -> HIGHER PRIORITY
LARGER INTEGER VALUE -> LOWER PRIORITY

Our task…

Implement the
PQSortedArray
class! ------------>

Good news: most of these
functions have already been
written for you! 😮

Understanding Code
Trying to code without
understanding the
provided code, which
is a fantastic way to
get in the mode of PQ

READING AND
UNDERSTANDING
THE PROVIDED CODE
TO GET A GREAT
START ON YOUR
IMPLEMENTATION

Understanding Code

For the first time in our assignments, we
will be harnessing the power of both the
interface and the implementation.

How are the comments different between
the .h and the .cpp file? Who is supposed to
see and interact with each type of file?

Understanding Code

What is the purpose of each variable?

Understanding Code

This last line looks kind of funky! Our job is
to detangle what each part means.

Time to get our hands dirty!

Enqueue

Let's see how this should work.

Enqueue

Enqueue

Enqueue

Enqueue
Looks good, the
priorities are
sorted so far!

Enqueue

THAT'S NOT
SORTED!!!

Enqueue

THAT'S NOT
SORTED!!!

Great point, char.

We can't just insert at the end, like a
regular queue.
Instead, we have to…

Steps to Enqueue

1. Loop through the PQ

Steps to Enqueue

2. Compare the element priorities of the current
element and the element you're going to insert

Steps to Enqueue

3. If you find that your element-to-insert
should go right before the
current-element-in-PQ, this is the index in
which you'll insert your elem-to-insert!

Once you've found this index, there's no
need to keep looping.

Steps to Enqueue

Steps to Enqueue

4. Scooch all of the necessary elements over by 1
to make space for your new element.

Steps to Enqueue

5. Add in your element at the index!

Steps to Enqueue

5. Add in your element at the index!

TO BE CLEAR:

These steps to enqueue should always be
how you enqueue (never just add to the
back!!!)

The previous example was just drawn out
to show us the necessity for the algorithm!

Things to consider…

When you enqueue() a new element, do
any of your member variables need to be
updated?

Can I add as many things as I want? 🤔

Grow as We Go

Grow as We Go

Grow

To handle this, we need the ability to grow
the maximum capacity of our PQ.
Something to think about: how can you
check if you need to grow? Which member
variables do we need to check?
Let's walk through how to grow our array
to twice its size…

Grow

Remember: we cannot resize dynamically
allocated arrays.
This means we actually need to create a
new array if we want one that is 2x bigger.
(Great candidate for a helper function!)

Make sure that you…

- Copy over all of the elements from the
original array

- Responsibly clean up any memory that
you are no longer using

- Change the values of any relevant
member variables that have changed
as a result of this growing

Questions about
PQSortedArray?

Assignment 4

1. Warmup
2. PQ Sorted Array
3. PQ Client
4. PQ Heap

Client who?

A client is someone who will actually use
the PriorityQueue that you've implemented.

We will be using the PQ that we created to
solve different cool problems.
(Psst: we've done this before using ADTs (like in Assign2!),
Now, we're just using our own ADT, the PQ.)

PQ Client: Sort Analysis

We are going to analyze the runtime of
pqSort().

More good news: we've given you the code
here, too! (wow!)

PQ Client: Sort Analysis

We see that the function calls enqueue() and
dequeue().

Now, we just need to consider the runtimes of
these 2 functions from our PQ and see how it all
comes together!
How many times is enqueue() called? How many
times is dequeue() called? What is the runtime for
each of those calls? Hmm…

PQ Client: Top K

Goal: Return the top K values in a stream of
data in descending order of priority.

Vector<DataPoint> topK(istream& stream, int k)

 ^ ^ ^
 Top values data stream # to return

Example:
Stream:
 {a, 1} -> {n, 5} -> {h, 3} -> {j, 0} -> {p, 9}
K = 3

1) Top 3 values:
a) {n, 5}, {h, 3}, {p, 9}

2) Descending integer order of priority:
a) {p, 9}, {n, 5}, {h, 3}

Stream of data

This is just a way to work with a single
element at a time - to avoid storing
everything at once.
How to iterate through a stream:
DataPoint point;

while (stream >> point) {

 /* do something with point */
}

K and Stream size

● Return the most elements up to and
including K that you can

● If Stream size >= K
○ Return top K values

● If Stream size < K
○ Return top “Stream size” values

● You can assume K > 0

Size Constraint O(k)

● Tip: Use runtime and space constraints
to help you design your algorithm

● O(k) size => we can never store more
than k elements at a time

● Check out the handout out for some
time constraint tips

How to keep size O(k):
Let’s say k = 3
So far our largest K values are {3, 10, 5}
If we see a 2 - how do we update our
largest 3 values?

Do nothing!
If we see a 11, how do we update our
largest 3 values?

We should replace 3 with 11

Size Constraint O(k)
● Use the intuition on the previous slide to

keep within the space constraint
● There’s a reason we use a PQ here

○ Take advantage of what we
dequeue

Big O analysis
● The runtime will depend on n and k

1) First give it your best guess!
2) Test it with time trials

a) First only change n - what effect
does it have?

b) Next only change k - how does the
runtime change?

Questions about
PQ Client?

Assignment 4

1. Warmup
2. PQ Sorted Array
3. PQ Client
4. PQ Heap

PQ Heap

● PQSortedArray is kinda slow
● PQHeap is quicker!
● The trick: we store the data better

○ It’ll still be in an array but we have a
different representation

Min Binary Heap Rules

● Every parent has a higher priority (lower
integer value) than its children

● Binary: Two children per parent
● Complete: we fill the heap from left to

right, above rows are completely filled

PQ Heap: Intro to the PQueue
Heap Class

You don’t have to use
these, but it’ll make your
life easier

Same interface
(client side) as
PQSortedArray

PQ Heap: Intro to the PQueue
Heap Class

● Since we are using a min heap - the
highest priority, the lowest integer
value, will be our root

● We’re storing the min heap in an array-
let’s see how:

PQ Heap: Intro to the PQueue
Heap Class
Example:
{ “a”, 0 }
{ “b”, 1 }
{ “c”, 2 }
{ “d”, 3 }
{ “e”, 4 }
{ “f”, 5 }
{ “g”, 6 }

“a”

“b” “c”

“d” “e” “f” “g”

[{ “a”, 0 }, { “b”, 1 }, “c”, 2 }, { “d”, 3 }, { “e”, 4 }, { “f”, 5 }, { “g”, 6 }]

PQ Heap: Intro to the PQueue
Heap Class
For the purpose of examples,
we will be drawing these
binary heaps with the priority
numbers rather than elem
strings.

PQ Heap: Validate Internal State
● This is a way to check if your heap is valid
● Optional but highly recommended!! It’s

hard to otherwise track down which
action broke heap ordering

● Think about which approach is easier:
○ Loop through each child, compare to

parent
○ Loop through each parent, compare to

children

PQ Heap: Enqueue

1) Add elem to the end of array, updating
internal information (like your elem
count), resizing if you need!

2) “Bubble up” to rearrange elements as
needed

3) Validate internal state to check as you
go!

PQ Heap: Enqueue

{ 5, 10, 8, 12, 11, 14, 13, 22, 43 }

Let’s enqueue an
elem with a priority 9.
We have to add it to
the first available slot

PQ Heap: Enqueue

{ 5, 10, 8, 12, 11, 14, 13, 22, 43, 9 }

Here, we added it to
our internal array

PQ Heap: Enqueue -- Bubble Up

{ 5, 10, 8, 12, 11, 14, 13, 22, 43, 9 }

Now, we start the process of
bubbling up:
- Compare the priority of the

value you just added with the
priority of its parent index

- Here, the parent is a larger
priority, so we swap the elems

PQ Heap: Enqueue -- Bubble Up

{ 5, 10, 8, 12, 9, 14, 13, 22, 43, 11 }

We continue this process until we
either reach the top (index 0 of
the array) or are no longer
smaller than our parent index

{ 5, 10, 8, 12, 9, 14, 13, 22, 43, 11 }

We continue this process until we
either reach the top (index 0 of
the array) or are no longer
smaller than our parent index

PQ Heap: Enqueue -- Bubble Up

{ 5, 9, 8, 12, 10, 14, 13, 22, 43, 11 }

PQ Heap: Enqueue -- Bubble Up

{ 5, 9, 8, 12, 10, 14, 13, 22, 43, 11 }

PQ Heap: Enqueue -- Bubble Up

We are done! Priority 9 >= 5 so it
can stay!

Observe the numeric
representation of our array above

Questions about Enqueue/Bubble Up?

Apparently it’s a soda???

PQ Heap: Recommended helper(s)

- Get parent index
- Get left child index
- Get right child index
- Swap

Although our Heap is easiest to comprehend drawn out,
we are actually dealing with an array of dataPoints.
Making helper functions to calculate indexes of
parents/children as well as swapping two elements will be
SUPER helpful.

PQ Heap: Recommended helper(s)

- Resize function

Also recommend making a function that dumps the elements
in your current array into a new one with double the size if
you reach your capacity!

You will want to call this in your enqueue function, if you are
trying to enqueue an element and are full!

PQ Heap: Dequeue

Now, let’s work through
the process of dequeuing
from our PQ
[Remember that just like
regular Queues, this will
give us the front elem (5)]

{ 5, 10, 8, 12, 11, 14, 13, 22, 43 }

PQ Heap: Dequeue

1) Swap first elem (to be returned) and last
element of array

2) “Bubble down” to rearrange elements
as needed

3) Return your elem!

{ 5, 10, 8, 12, 11, 14, 13, 22, 43 }

PQ Heap: Dequeue -- Bubble Down

Hint: save this value
as a variable to
return at the end of
your function

{ 43, 10, 8, 12, 11, 14, 13, 22, 5 }

PQ Heap: Dequeue -- Bubble Down

Swap last elem with
first elem

{ 43, 10, 8, 12, 11, 14, 13, 22, 5 }

Note how now 43 is
at the front of my
array (top of my
binary heap)

PQ Heap: Dequeue -- Bubble Down

{ 43, 10, 8, 12, 11, 14, 13, 22, 5 }

Now we compare the
priority of that top element
to the priorities of its 2
children, and swap it with
the smaller child

PQ Heap: Dequeue -- Bubble Down

{ 8, 10, 43, 12, 11, 14, 13, 22, 5 }

We repeat this process until
we have reached the end of
the array or until our value’s
priority is no longer larger
than its children’s priorities

PQ Heap: Dequeue -- Bubble Down

{ 8, 10, 13, 12, 11, 14, 43, 22, 5 }

We are done here!
In this case, our
elem with priority
43 has reached the
bottom…

PQ Heap: Dequeue -- Bubble Down

Questions on Dequeue/Bubble Down?

No soda for bubble down :(

Quick note:

{ 8, 10, 13, 12, 11, 14, 43, 22, 5 }

Technically the elem with priority 5
(that we returned) is still at the end of
our array. This is okay! When you
dequeue make sure you decrement
the number of elements in your array
that you are internally keeping track
of!

PQ Heap: Biggest Tips

- TEST AS YOU GO
- Array is 0-Indexed
- Note that you are sorting based on

PRIORITY (hence the name of our queue)
- Use dataPoint.priority to see this
- Lowest priority number is higher

priority → confusing… top of binary
heap is LOWEST number.

TIPS: Debugging Memory Leaks/Errors

- Essentially for every new you need to
delete

- Don’t free your heap more than once
- Don’t try to access memory you don’t have

access to! (Seg faults!)
- We will deal with this much more in future

assignments! Stay tuned! If you are curious
about dealing with memory and pointers
like this, take CS107!!

Break the speed barrier

Jump back to your role as client and open up
pqclient.cpp. Edit the functions pqSort and topK to use
PQHeap in place of PQSortedArray, and observe the
insane time differences!

Data Analysis Demos and Ethics!

For the final part of the assignment, you
will be asked to use your code to analyze
real life data and answer embedded ethics
questions!

Final questions?

Go forth!
Heap that Queue!

