
Divide-and-Conquer
Sorting Algorithms

What is an example of a real-world problem
that's made easier by dividing it up across many

people?

(put your answers in the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data
structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic
real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic
real-world
algorithms

Core
Tools

User/client arrays

 dynamic memory
 management

linked data
structures

Implementation

real-world
algorithms

Today’s
questions

How can we design better,
more efficient sorting
algorithms?

Today’s
topics

1. Review

2. Merge Sort

3. Quicksort

Review
[linked list wrapup + intro to sorting]

Linked List Wrapup

Common linked lists operations
● Traversal

○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

Takeaways for manipulating the middle of a list
● While traversing to where you want to add/remove a node, you’ll often want to

keep track of both a current pointer and a previous pointer.
○ This makes rewiring easier between the two!
○ This also means you have to check that neither is nullptr before dereferencing.

0x26b0

head

N
od

e* "Kylie""Nick" PT
R

"Trip"

0xbc70

prev

N
od

e*

0x40f0

cur

N
od

e*

Linked list summary
● You’ve now learned lots of ways to manipulate linked lists!

○ Traversal
○ Rewiring
○ Insertion (front/back/middle)
○ Deletion (front/back/middle)

● You’ve seen linked lists in classes and outside classes, and pointers passed
by value and passed by reference.

● Assignment 5 will really test your understanding of linked lists.
○ Draw lots of pictures!
○ Test small parts of your code at a time to make sure individual operations are working

correctly.

Sorting

sorting
Given a list of data points, sort those

data points into ascending / descending
order by some quantity.

Definition

Selection sort takeaways

● Selection sort works by "selecting" the smallest remaining
element in the list and putting it in the front of all remaining
elements.

● Selection sort is an O(n2) algorithm.

Insertion sort algorithm
● Repeatedly insert an element into a sorted sequence at the front of the array.

● To insert an element, swap it backwards until either:
○ (1) it’s bigger than the element before it, or
○ (2) it’s at the front of the array.

The complexity of insertion sort
● In the worst case (the array is in reverse sorted order), insertion sort takes

time O(n2).
○ The analysis for this is similar to selection sort!

● In the best case (the array is already sorted), insertion takes time O(n)
because you only iterate through once to check each element.

○ Selection sort, however, is always O(n2) because you always have to search the remainder of
the list to guarantee that you’re finding the minimum at each step.

● Fun fact: Insertion sorting an array of random values takes, on average,
O(n2) time.

○ This is beyond the scope of the class – take an advanced statistics or algorithms class if
you’re interested in learning more!

Let's do better than
O(N2) sorting!

Advanced Sorting

How can we design better,
more efficient sorting

algorithms?

Divide-and-Conquer

Motivating Divide-and-Conquer
● So far, we've seen O(N2) sorting algorithms. How can we start to do better?

Motivating Divide-and-Conquer
● So far, we've seen O(N2) sorting algorithms. How can we start to do better?

● Assume that it takes t seconds to run insertion sort on the following array:

Motivating Divide-and-Conquer
● So far, we've seen O(N2) sorting algorithms. How can we start to do better?

● Assume that it takes t seconds to run insertion sort on the following array:

● Poll: Approximately how many seconds will it take to run insertion sort on
each of the following arrays?

Motivating Divide-and-Conquer
● So far, we've seen O(N2) sorting algorithms. How can we start to do better?

● Assume that it takes t seconds to run insertion sort on the following array:

● Poll: Approximately how many seconds will it take to run insertion sort on
each of the following arrays?

Answer: Each
array should only
take about t/4
seconds to sort.

Motivating Divide-and-Conquer
● Main insight:

○ Sorting N elements directly takes total time t
○ Sorting two sets of N/2 elements (total of N elements) takes total time t/2
○ We got a speedup just by sorting smaller sets of elements at a time!

Motivating Divide-and-Conquer
● Main insight:

○ Sorting N elements directly takes total time t
○ Sorting two sets of N/2 elements (total of N elements) takes total time t/2
○ We got a speedup just by sorting smaller sets of elements at a time!

● The main idea behind divide-and-conquer algorithms takes advantage of this.
Let's design algorithms that break up a problem into many smaller problems
that can be solved in parallel!

General Divide-and-Conquer Approach
● Our general approach when designing a divide-and-conquer algorithm is to

decide how to make the problem smaller and how to unify the results of these
solved, smaller problems.

General Divide-and-Conquer Approach
● Our general approach when designing a divide-and-conquer algorithm is to

decide how to make the problem smaller and how to unify the results of these
solved, smaller problems.

● Both sorting algorithms we explore today will have both of these components:
○ Divide Step

■ Make the problem smaller by splitting up the input list
○ Join Step

■ Unify the newly sorted sublists to build up the overall sorted result

General Divide-and-Conquer Approach
● Our general approach when designing a divide-and-conquer algorithm is to

decide how to make the problem smaller and how to unify the results of these
solved, smaller problems.

● Both sorting algorithms we explore today will have both of these components:
○ Divide Step

■ Make the problem smaller by splitting up the input list
○ Join Step

■ Unify the newly sorted sublists to build up the overall sorted result

● Divide-and-Conquer is a ripe time to return to recursion!

Merge Sort

Merge Sort
A recursive sorting algorithm!

● Base Case:
○ An empty or single-element list is already sorted.

● Recursive step:
○ Break the list in half and recursively sort each part. (easy divide)
○ Use merge to combine them back into a single sorted list (hard join)

What do we do
now? When does
the sorting magic
happen?

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

Each step makes a
single comparison and
reduces the number of
elements by one. If
there are n total
elements, this algorithm
runs in time O(n).

The Key Insight: Merge
● The merge algorithm takes in two sorted lists and combines them into a single

sorted list.

● While both lists are nonempty, compare their first elements. Remove the
smaller element and append it to the output.

● Once one list is empty, add all elements from the other list to the output.

Merge Sort
A recursive sorting algorithm!

● Base Case:
○ An empty or single-element list is already sorted.

● Recursive step:
○ Break the list in half and recursively sort each part. (easy divide)
○ Use merge to combine them back into a single sorted list (hard join)

Merge Sort – Let's
code it!

Analyzing Mergesort:
How fast is this sorting algorithm?

void mergeSort(Vector<int>& vec) {
 /* A list with 0 or 1 elements is already sorted by definition. */
 if (vec.size() <= 1) return;

 /* Split the list into two, equally sized halves */
 Vector<int> left, right;
 split(vec, left, right);

 /* Recursively sort the two halves. */
 mergeSort(left);
 mergeSort(right);

 /*
 * Empty out the original vector and re-fill it with merged result
 * of the two sorted halves.
 */
 vec = {};
 merge(vec, left, right);
}

void mergeSort(Vector<int>& vec) {
 /* A list with 0 or 1 elements is already sorted by definition. */
 if (vec.size() <= 1) return;

 /* Split the list into two, equally sized halves */
 Vector<int> left, right;
 split(vec, left, right);

 /* Recursively sort the two halves. */
 mergeSort(left);
 mergeSort(right);

 /*
 * Empty out the original vector and re-fill it with merged result
 * of the two sorted halves.
 */
 vec = {};
 merge(vec, left, right);
}

O(n) work

O(n) work

void mergeSort(Vector<int>& vec) {
 /* A list with 0 or 1 elements is already sorted by definition. */
 if (vec.size() <= 1) return;

 /* Split the list into two, equally sized halves */
 Vector<int> left, right;
 split(vec, left, right);

 /* Recursively sort the two halves. */
 mergeSort(left);
 mergeSort(right);

 /*
 * Empty out the original vector and re-fill it with merged result
 * of the two sorted halves.
 */
 vec = {};
 merge(vec, left, right);
}

O(n)

O(n)

O(n)

O(n)

O(n)

O(n) work at each level!

O(n)

O(n)

O(n)

O(n)

O(n)

How many levels are there?

O(n)

O(n)

O(n)

O(n)

O(n)

Remember: How many times do we
divide by 2?

O(n)

O(n)

O(n)

O(n)

O(n)

O(log n) levels!

O(n)

O(n)

O(n)

O(n)

O(n)

Total work: O(n * log n)

void mergeSort(Vector<int>& vec) {
 /* A list with 0 or 1 elements is already sorted by definition. */
 if (vec.size() <= 1) return;

 /* Split the list into two, equally sized halves */
 Vector<int> left, right;
 split(vec, left, right);

 /* Recursively sort the two halves. */
 mergeSort(left);
 mergeSort(right);

 /*
 * Empty out the original vector and re-fill it with merged result
 * of the two sorted halves.
 */
 vec = {};
 merge(vec, left, right);
}

O(n log n)
work

Analyzing Mergesort: Can we do better?
● Mergesort runs in time O(n log n), which is faster than insertion sort’s O(n2).

○ Can we do better than this?

● A comparison sort is a sorting algorithm that only learns the relative ordering
of its elements by making comparisons between elements.

○ All of the sorting algorithms we’ve seen so far are comparison sorts.

● Theorem: There are no comparison sorts whose average-case runtime can
be better than O(n log n).

● If we stick with making comparisons, we can only hope to improve on
mergesort by a constant factor!

A Quick Historical Aside
● Mergesort was one of the first algorithms developed for computers as we

know them today.

● It was invented by John von Neumann in 1945 (!) as a way of validating the
design of the first “modern” (stored-program) computer.

● Want to learn more about what he did? Check out this article by Stanford’s
very own Donald Knuth.

https://fermatslibrary.com/s/von-neumanns-first-computer-program

Announcements

Announcements
● Assignment 5 was released yesterday and will be due on Tuesday, August 3

at 11:59pm PDT.

● The Assignment 5 YEAH session will take place Friday 7/30 at 11:30am
PDT.

Quicksort

Quicksort Algorithm
1. Partition the elements into three categories based on a chosen pivot

element:
○ Elements smaller than the pivot
○ Elements equal to the pivot
○ Elements larger than the pivot

Quicksort Algorithm
1. Partition the elements into three categories based on a chosen pivot

element:
○ Elements smaller than the pivot
○ Elements equal to the pivot
○ Elements larger than the pivot

Our divide step (hard
divide)!

Quicksort Algorithm
1. Partition the elements into three categories based on a chosen pivot

element:
○ Elements smaller than the pivot
○ Elements equal to the pivot
○ Elements larger than the pivot

2. Recursively sort the two partitions that are not equal to the pivot (smaller
and larger elements).
○ Now our smaller elements are in sorted order, and our larger elements are also in

sorted order!

Quicksort Algorithm
1. Partition the elements into three categories based on a chosen pivot

element:
○ Elements smaller than the pivot
○ Elements equal to the pivot
○ Elements larger than the pivot

2. Recursively sort the two partitions that are not equal to the pivot (smaller
and larger elements).
○ Now our smaller elements are in sorted order, and our larger elements are also in

sorted order!

3. Concatenate the three now-sorted partitions together.

Quicksort Algorithm
1. Partition the elements into three categories based on a chosen pivot

element:
○ Elements smaller than the pivot
○ Elements equal to the pivot
○ Elements larger than the pivot

2. Recursively sort the two partitions that are not equal to the pivot (smaller
and larger elements).
○ Now our smaller elements are in sorted order, and our larger elements are also in

sorted order!

3. Concatenate the three now-sorted partitions together.
Our join step!
(easy join)

14 12 16 13 11 15Input of unsorted elements:

14 12 16 13 11 15Input of unsorted elements:

Choose the first element as
the pivot.

14 12 16 13 11 15Input of unsorted elements:

Partition elements into
smaller than, equal to, and

greater than the pivot.

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

Recursively sort the smaller
partition for pivot 14!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

Choose the first element as
the pivot.

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

Partition elements into
smaller than, equal to, and

greater than the pivot.

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311
Recursively sort the

smaller partition for pivot
12!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

Only one element so we’re
done!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

Recursively sort the larger
partition for pivot 12!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

Only one element so we’re
done!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311 Now we can concatenate
smaller than, equal to, and
greater than for the pivot

12.

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

Recursively sort the larger
partition for pivot 14!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

Choose the first element
as the pivot.

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

Partition elements into
smaller than, equal to, and

greater than the pivot.

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

15

Recursively sort the
smaller partition for pivot

16!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

15

Only one element so we’re
done!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

15

Recursively sort the larger
partition for pivot 16!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

15

No elements in that
partition so we’re done!

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

15
Now we can concatenate

smaller than, equal to, and
greater than for the pivot

16.

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

15

15 16

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

15

15 16

Now we can concatenate
smaller than, equal to, and
greater than for the pivot

14.
(the original pivot!)

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

15

15 1614

14 12 16 13 11 15Input of unsorted elements:

12 1613 11 15

1311

11 1312

15

15 1614 Sorted!

Quicksort Algorithm
1. Partition the elements into three categories based on a chosen pivot

element:
○ Elements smaller than the pivot
○ Elements equal to the pivot
○ Elements larger than the pivot

2. Recursively sort the two partitions that are not equal to the pivot (smaller
and larger elements).
○ Now our smaller elements are in sorted order, and our larger elements are also in

sorted order!

3. Concatenate the three now-sorted partitions together.

Quicksort –
Let's code it!

Quicksort Takeaways
● Our “divide” step = partitioning elements based on a pivot

● Our recursive call comes in between dividing and joining
○ Base case: One element or no elements to sort!

● Our “join” step = combining the sorted partitions

● Unlike in merge sort where most of the sorting work happens in the “join”
step, our sorting work occurs primarily at the “divide” step for quicksort (when
we sort elements into partitions).

Quicksort Efficiency Analysis
● Similar to Merge Sort, Quicksort also has O(N log N) runtime in the

average case.
○ With good choice of pivot, we split the initial list into roughly two equally-sized parts every

time.
○ Thus, we reach a depth of about log N split operations before reaching the base case.
○ At each level, we do O(n) work to partition and concatenate.

Quicksort Efficiency Analysis
● Similar to Merge Sort, Quicksort also has O(N log N) runtime in the

average case.
○ With good choice of pivot, we split the initial list into roughly two equally-sized parts every

time.
○ Thus, we reach a depth of about log N split operations before reaching the base case.
○ At each level, we do O(n) work to partition and concatenate.

● However, Quicksort performance can degrade to O(N2) with poor choice of
pivot!

○ Come talk to us after class if you're interested in why!

Quicksort Efficiency Analysis
● Similar to Merge Sort, Quicksort also has O(N log N) runtime in the average

case.
○ With good choice of pivot, we split the initial list into roughly two equally-sized parts every time.
○ Thus, we reach a depth of about log N split operations before reaching the base case.
○ At each level, we do O(n) work to partition and concatenate.

● However, Quicksort performance can degrade to O(N2) with poor choice of pivot!
○ Come talk to us after class if you're interested in why!

● The ultimate question: Can we do better?
○ From a space efficiency perspective, yes, there are versions of Quicksort that don't require making

many copies of the list (in-place Quicksort). But from a runtime efficiency perspective...

The Limit Does Exist
● There is a fundamental limit on the efficiency of comparison-based sorting

algorithms.

The Limit Does Exist
● There is a fundamental limit on the efficiency of comparison-based sorting

algorithms.

● You can prove that it is not possible to guarantee a list has been sorted
unless you have done at minimum O(N log N) comparisons.

The Limit Does Exist
● There is a fundamental limit on the efficiency of comparison-based sorting

algorithms.

● You can prove that it is not possible to guarantee a list has been sorted
unless you have done at minimum O(N log N) comparisons.

● Thus, we can't do better (in Big-O terms at least) than Merge Sort and
Quicksort!

Final Advice

Assignment 5 Tips
● When implementing the two sorting algorithms, it is strongly recommended to

implement helper functions for the divide/join components of the algorithm.
○ For merge sort this means having helper functions for the split and merge operations
○ For quicksort this means having helper functions for the partition and concatenate operations

Assignment 5 Tips
● When implementing the two sorting algorithms, it is strongly recommended to

implement helper functions for the divide/join components of the algorithm.
○ For merge sort this means having helper functions for the split and merge operations
○ For quicksort this means having helper functions for the partition and concatenate operations

● These helper functions should be implemented iteratively, but the overall
sorting algorithms themselves operate recursively. Mind the distinction!

Assignment 5 Tips
● When implementing the two sorting algorithms, it is strongly recommended to

implement helper functions for the divide/join components of the algorithm.
○ For merge sort this means having helper functions for the split and merge operations
○ For quicksort this means having helper functions for the partition and concatenate operations

● These helper functions should be implemented iteratively, but the overall
sorting algorithms themselves operate recursively. Mind the distinction!

● Write tests for your helper functions first! Then, write end-to-end tests for your
sorting functions.

Summary

https://www.toptal.com/developers/sorting-algorithms

https://www.toptal.com/developers/sorting-algorithms

Sorting
● Sorting is a powerful tool for organizing data in a meaningful format!

● There are many different methods for sorting data:
○ Selection Sort
○ Insertion Sort
○ Mergesort
○ Quicksort
○ And many more…

● Understanding the different runtimes and tradeoffs of the different algorithms
is important when choosing the right tool for the job!

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic
real-world
algorithms

Core
Tools

User/client arrays

 dynamic memory
 management

linked data
structures

Implementation

Trees!

