
Recursive Backtracking:
Enumeration

What is a game that would be easy to play
if you had the ability to quickly think

of all possible moves or plays?
(please put your answers in the chat)

vectors + grids

stacks + queues

sets + maps

Object-Oriented
Programming

arrays

dynamic memory
management

linked data structures

algorithmic
analysistesting

recursive
problem -solving

Roadmap

Life after CS106B
Core
Tools

Use r/client
Implementation

Roadmap graphic courtesy of Nick Bowman Jue

vectors + grids

stacks + queues

sets + maps

Object-Oriented
Programming

arrays

dynamic memory
management

linked data structures

algorithmic
analysistesting

Roadmap

Life after CS106B

User/client
Implementation

recursive
problem -solving

Core
Tools

Today’s
question

How can we leve rage
backtracking recursion to
solve inte resting
problems?

Today’s
topics

1. Review

2. Shrinkable Words

3. Generating Subse ts

4. Se lecting Unbiased Jurie s

Celebrate Struggle

Review
(advanced recursion patte rns and

introduction to recursive backtracking)

Why do we use recursion?

● Elegance
○ Allows us to solve problems with ve ry clean and concise code

● Efficiency
○ Allows us to accomplish be tte r runtimes when solving problems

● Dynamic
○ Allows us to solve problems that are hard to solve ite rative ly

Elegance (Towers of Hanoi)

void findSolution(int n, char source, char dest,
char aux) {

if (n == 1) {
moveSingleDisk(source, dest);

} else {
findSolution(n - 1, source, aux, dest);
moveSingleDisk(source, dest);
findSolution(n - 1, aux, dest, source);

}
}

void findSolutionIterative(int n, char source, char dest, char aux) {
int numMoves = pow(2, n) - 1; // total number of moves necessary

// if number of disks is even, swap dest and aux posts
if (n % 2 == 0) {

char temp = dest;
dest = aux;
aux = temp;

}

Stack<int> srcStack;
for (int i = n; i > 0; i--) {

srcStack.push(i);
}
cout << srcStack << endl;
Stack<int> destStack;
Stack<int> auxStack;

// Determine next move based on how many moves have been made so far
for (int i = 1; i <= numMoves; i++) {

switch (i % 3) {
case 1:

if (srcStack.isEmpty() ||
(!destStack.isEmpty() && srcStack.peek() > destStack.peek())) {

srcStack.push(destStack.pop());
moveSingleDisk(dest, source);

} else {
destStack.push(srcStack.pop());
moveSingleDisk(source, dest);

}
break;

case 2:
if (srcStack.isEmpty() ||

(!auxStack.isEmpty() && srcStack.peek() > auxStack.peek())) {
srcStack.push(auxStack.pop());
moveSingleDisk(aux, source);

} else {
auxStack.push(srcStack.pop());
moveSingleDisk(source, aux);

}
break;

case 0:
if (destStack.isEmpty() ||

(!auxStack.isEmpty() && destStack.peek() > auxStack.peek())) {
destStack.push(auxStack.pop());
moveSingleDisk(aux, dest);

} else {
auxStack.push(destStack.pop());
moveSingleDisk(dest, aux);

}
break;

}
}

}

Efficiency (Binary Search)
● Leverage the structure in sorted data to

eliminate half of the search space every
time when searching for an e lement
○ Only do a direct comparison with the

middle e lement in the list
○ Recursive ly search the le ft half if the

e lement is le ss than the middle
○ Recursive ly search the right half if the

e lement is greate r than the middle

● Binary search has logarithmic Big-O:
O(log N)
○ Enable s e fficient pe rformance of se ts and

maps

Input Size Runtime (s)

1000000 0 .064

2000000 0 .072

4000000 0 .082

8000000 0 .097

16000000 0 .111

32000000 0 .121

64000000 0 .14

Input Size Runtime (s)

10000 0 .096

20000 0 .189

40000 0 .368

8000000 0 .767

160000 1.387

320000 2.746

640000 6.154

Binary Search Linear Search

Two types of recursion

Basic recursion

● One repeated task that builds up
a solution as you come back up
the call stack

● The final base case de fines the
initial seed of the solution and
each call contribute s a little bit to
the solution

● Initial call to recursive function
produces final solution

Backtracking recursion

● Build up many possible solutions
through multiple recursive calls at
each step

● Seed the initial recursive call with
an “empty” solution

● At each base case , you have a
potential solution

Dynamic (Coin Sequences + Decision Trees)
● The height of the tree corresponds to

the number of decisions we have to
make . The width at each decision
point corresponds to the number of
options at each decision .

● To exhaustive ly explore the entire
search space , we must try every
possible option for every possible
decision .

Using backtracking recursion

● There are 3 main categorie s of problems that we can solve by using
backtracking recursion:

Using backtracking recursion

● There are 3 main categorie s of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

Using backtracking recursion

● There are 3 main categorie s of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

Using backtracking recursion

● There are 3 main categorie s of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

Using backtracking recursion

● There are 3 main categorie s of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve ,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Base case: No le tte rs remaining to choose !

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Recursive case: For eve ry le tte r remaining, add that le tte r to the current pe rmutation and recurse !

Word scramble code

Permutations Code
void listPermutations(string s){

listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
if (remaining.empty()) {

cout << soFar << endl;
} else {

for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr(i+1);
listPermutationsHelper(rest, soFar + nextLetter);

}
}

}

Permutations Code
void listPermutations(string s){

listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
if (remaining.empty()) {

cout << soFar << endl;
} else {

for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr(i+1);
listPermutationsHelper(rest, soFar + nextLetter);

}
}

}

Use of recursive helper
function with empty
string as starting point

Permutations Code
void listPermutations(string s){

listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
if (remaining.empty()) {

cout << soFar << endl;
} else {

for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr(i+1);
listPermutationsHelper(rest, soFar + nextLetter);

}
}

}

Decisions yet
to be made

Permutations Code
void listPermutations(string s){

listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
if (remaining.empty()) {

cout << soFar << endl;
} else {

for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr(i+1);
listPermutationsHelper(rest, soFar + nextLetter);

}
}

}

Decisions yet
to be made Decisions

already made

Permutations Code
void listPermutations(string s){

listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
if (remaining.empty()) {

cout << soFar << endl;
} else {

for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr(i+1);
listPermutationsHelper(rest, soFar + nextLetter);

}
}

}

Decisions yet
to be made Decisions

already made

Base case: No decisions remain

Permutations Code
void listPermutations(string s){

listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
if (remaining.empty()) {

cout << soFar << endl;
} else {

for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr(i+1);
listPermutationsHelper(rest, soFar + nextLetter);

}
}

}

Decisions yet
to be made Decisions

already made

Recursive case: Try all
options for next decisionBase case: No decisions remain

Takeaways

● The specific mode l of the gene ral "choose / explore / unchoose" patte rn in
backtracking recursion that we applied he re can be thought of as "copy, edit,
recurse"
○ Since we passed all our paramete rs by value , each recursive stack frame had its own

independent copy of the string data that it could edit as appropriate
○ The "unchoose" step is implicit since the re is no need to undo anything by virtue of the fact

that editing a copy only has local consequences.

Takeaways

● The specific mode l of the gene ral "choose / explore / unchoose" patte rn in
backtracking recursion that we applied he re can be thought of as "copy, edit,
recurse"

● At each step of the recursive backtracking process, it is important to keep
track of the decisions we've made so far and the decisions we have left to
make

Takeaways

● The specific mode l of the gene ral "choose / explore / unchoose" patte rn in
backtracking recursion that we applied he re can be thought of as "copy, edit,
recurse"

● At each step of the recursive backtracking process, it is important to keep
track of the decisions we've made so far and the decisions we have left to
make

● Backtracking recursion can have variable branching factors at each leve l

Takeaways

● The specific mode l of the gene ral "choose / explore / unchoose" patte rn in
backtracking recursion that we applied he re can be thought of as "copy, edit,
recurse"

● At each step of the recursive backtracking process, it is important to keep
track of the decisions we've made so far and the decisions we have left to
make

● Backtracking recursion can have variable branching factors at each leve l

● Use of he lpe r functions and initial empty params that ge t built up is common

How can we leverage
backtracking recursion to solve

inte resting problems?

● A Little Word Puzzle

“What nine-letter word can be
reduced to a single-letter word
one letter at a time by removing
letters, leaving it a legal word at

each step?”

The Startling Truth?

S T A R T L I N G

The Startling Truth?

S T A R T I N G

The Startling Truth?

S T A R I N G

The Startling Truth?

S T R I N G

The Startling Truth?

S T I N G

The Startling Truth?

S I N G

The Startling Truth?

S I N

The Startling Truth?

I N

The Startling Truth?

I

Is there really just one
nine -le tte r word with this prope rty?

How can we determine if a word is shrinkable?

● A shrinkable word is a word that can be reduced down to one le tte r by
removing one characte r at a time , leaving a word at each step.

● Idea: Le t’s use a decision tree to remove le tte rs and de te rmine shrinkability !

What defines our shrinkable decision tree?

● Decision at each step (each leve l of the tree):
○ What le tte r are going to remove?

● Options at each decision (branches from each node):
○ The remaining le tte rs in the string

● Information we need to store along the way:
○ The shrinking string

What defines our shrinkable decision tree?

c t c t

Examples from Chris Gregg and Keith

What defines our shrinkable decision tree?

c t c t

“Cart” is
shrinkable......because “art” is

shrinkable....

...because “at” is
shrinkable....

...because “a” is a
single-letter word.

Examples from Chris Gregg and Keith

What defines our shrinkable decision tree?

c t c t

We can find a path through
the tree in two different ways!

Examples from Chris Gregg and Keith

What defines our shrinkable decision tree?

c t c t

We can find a path through
the tree in two different ways!cart

art

at

a

Examples from Chris Gregg and Keith

What defines our shrinkable decision tree?

c t c t

We can find a path through
the tree in two different ways!cart

cat

at

a

Examples from Chris Gregg and Keith

Non-shrinkability

Examples from Chris Gregg and Keith

Non-shrinkability

Examples from Chris Gregg and Keith

“Up” is not
shrinkable...

...because neither “P”
nor “U” are words.

Non-shrinkability

Examples from Chris Gregg and Keith

“Cup” is not
shrinkable...

...because none of these
are shrinkable words.

Non-shrinkability

Examples from Chris Gregg and Keith

“Cusp” is not
shrinkable...

...because none of these
are shrinkable words.

How can we determine if a word is shrinkable?

● Base cases:
○ A string that is not a word is not a shrinkable word.
○ Any single -le tte r word is shrinkable (A, I, and O).

● Recursive cases:
○ A multi-le tte r word is shrinkable if you can remove a le tte r to form a

shrinkable word.
○ A multi-le tte r word is not shrinkable if no matte r what le tte r you remove ,

it’s not shrinkable .

Lexicon

● Lexicon is a he lpful ADT provided by the Stanford C++ librarie s (in lexicon.h)
that is used specifically for storing many words that make up a dictionary

● Generally, Lexicons offe r faste r lookup than normal Se ts, which is why we
choose to use them when dealing with words and large dictionarie s

● Lexicon lex("res/EnglishWords.txt"); // create from file
lex.contains("koala"); // returns true
lex.contains("zzzzz"); // returns false
lex.containsPrefix("fi"); // returns true if there are
any words starting with "fi" in the dictionary

Let’s code it!

Takeaways

● This is anothe r example of copy-edit -recurse to choose , explore , and then
implicitly unchoose !

● In this problem, we’re using backtracking to find if a solution exists .
○ Notice the way the recursive case is structured:

for all options at each decision point:
if recursive call returns true:

return true;
return false if all options are exhausted;

Announcements

Announcements

• Assignment 3 was re leased last Thursday.
• The Assignment 3 YEAH session slides and recording have been posted.
• This assignment is challenging and quite long; please come to LaIR or office

hours to check in with the teaching team if you need anything!

• We’ve re leased practice problems and information about the diagnostic.
You’ll be able to take the diagnostic ove r the weekend.

• Please make sure to read the instructions on the diagnostic page of the
website , and ve rify that you can access your Gradescope account be fore
the weekend!

https://web.stanford.edu/class/cs106b-8/assessments/diagnostic/

Subsets

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
Even though we may no

care about this “team,” th
empty set is a subset of o

original set!

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
As humans, it might be

easiest to think about all
teams (subsets) of a

particular size.

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}

As humans, it might be
easiest to think about all

teams (subsets) of a
particular size.

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}

As humans, it might be
easiest to think about all

teams (subsets) of a
particular size.

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

As humans, it might be
easiest to think about all

teams (subsets) of a
particular size.

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

Another case of
“generate/count all

solutions” using recurs
backtracking!

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

For computers generati
subsets (and thinking ab
decisions), there’s anoth
pattern we might notice

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

Half the subsets contain
“Nick”

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

Half the subsets contain
“Kylie”

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

Half the subsets contain
“Trip”

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

Half the subsets that
contain “Trip” also conta

“Nick”

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

Half the subsets that
contain both “Trip” and
“Nick” contain “Kylie”

Subsets

Given a group of people , suppose we wanted to gene rate all possible teams, or
subse ts, of those people :

{}
{“Nick”}
{“Kylie”}
{“Trip”}
{“Nick”, “Kylie”}
{“Nick”, “Trip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

🤔🤔

It’s time to draw a tree!!!

What defines our subsets decision tree?

● Decision at each step (each leve l of the tree):
○ Are we going to include a given e lement in our subse t?

What defines our subsets decision tree?

● Decision at each step (each leve l of the tree):
○ Are we going to include a given e lement in our subse t?

● Options at each decision (branches from each node):
○ Include e lement
○ Don’t include e lement

What defines our subsets decision tree?

● Decision at each step (each leve l of the tree):
○ Are we going to include a given e lement in our subse t?

● Options at each decision (branches from each node):
○ Include e lement
○ Don’t include e lement

● Information we need to store along the way:
○ The se t you’ve built so far
○ The remaining e lements in the original se t

Decision tree
Empty se t Include NickDon’t include Nick

Decision tree
Empty se t Include NickDon’t include Nick

No Kylie Kylie

Decision tree
Empty se t Include NickDon’t include Nick

No Kylie Kylie

No Trip Trip

Decision tree
Empty se t Include NickDon’t include Nick

No Kylie Kylie

No Trip Trip No Trip Trip

Decision tree
Empty se t Include NickDon’t include Nick

No Kylie Kylie

No Trip Trip No Trip Trip

No Kylie Kylie

No Trip Trip No Trip Trip

What defines our subsets decision tree?

● Decision at each step (each leve l of the tree):
○ Are we going to include a given e lement in our subse t?

● Options at each decision (branches from each node):
○ Include e lement
○ Don’t include e lement

● Information we need to store along the way:
○ The se t you’ve built so far
○ The remaining elements in the original set

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Base case: No people remaining to choose from!

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Recursive case: Pick someone in the se t. Choose to include or not include them.

How do recursive backtracking
solutions look diffe rent when
data structures are involved?

Let’s code it!

Takeaways

● This is our first time see ing an explicit “unchoose” step
○ This is necessary because we’re passing se ts by re fe rence and editing

them!

Takeaways

● This is our first time see ing an explicit “unchoose” step
○ This is necessary because we’re passing se ts by re fe rence and editing

them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Takeaways

● This is our first time see ing an explicit “unchoose” step
○ This is necessary because we’re passing se ts by re fe rence and editing

them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Choose

Takeaways

● This is our first time see ing an explicit “unchoose” step
○ This is necessary because we’re passing se ts by re fe rence and editing

them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Explore
(part 1)

Takeaways

● This is our first time see ing an explicit “unchoose” step
○ This is necessary because we’re passing se ts by re fe rence and editing

them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Explore
(part 2)

Takeaways

● This is our first time see ing an explicit “unchoose” step
○ This is necessary because we’re passing se ts by re fe rence and editing

them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Explicit
Unchoose
(i.e. undo)

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Takeaways

● This is our first time see ing an explicit “unchoose” step
○ This is necessary because we’re passing se ts by re fe rence and editing

them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Without this
step, we could
not explore the
other side of
the tree

Takeaways

● This is our first time see ing an explicit “unchoose” step
○ This is necessary because we’re passing se ts by re fe rence and editing

them!

● It’s important to conside r not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might he lp you de fine your base case .

Takeaways

● This is our first time see ing an explicit “unchoose” step
○ This is necessary because we’re passing se ts by re fe rence and editing

them!

● It’s important to conside r not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might he lp you de fine your base case .

● The subse t problem contains themes we’ve seen in backtracking recursion:
○ Building up solutions as we go down the decision tree
○ Using a he lpe r function to abstract away implementation de tails

Application: Choosing
an Unbiased Jury

Jury Selection

● The process of jury se lection involves processing a large pool of candidate s
that have been called for jury duty, and se lecting some small subse t of those
candidate s to se rve on the jury.

Photo from 2007 TV show, the Verdict.

Jury Selection

● The process of jury se lection involves processing a large pool of candidate s
that have been called for jury duty, and se lecting some small subse t of those
candidate s to se rve on the jury.

● When se lecting members of a jury, each individual pe rson will come in with
the ir own biases that might sway the case .

Jury Selection

● The process of jury se lection involves processing a large pool of candidate s
that have been called for jury duty, and se lecting some small subse t of those
candidate s to se rve on the jury.

● When se lecting members of a jury, each individual pe rson will come in with
the ir own biases that might sway the case .

● Ideally, we would like to se lect a jury that is unbiased (sum of all biases is 0)

Jury Selection

● The process of jury se lection involves processing a large pool of candidate s
that have been called for jury duty, and se lecting some small subse t of those
candidate s to se rve on the jury.

● When se lecting members of a jury, each individual pe rson will come in with
the ir own biases that might sway the case .

● Ideally, we would like to se lect a jury that is unbiased (sum of all biases is 0)

● An unbiased jury is just a subset with a special property – le t's apply the
code that we just wrote !

What defines our subsets decision tree?

● Decision at each step (each leve l of the tree):
○ Are we going to include a given e lement in our subse t?

● Options at each decision (branches from each node):
○ Include e lement
○ Don’t include e lement

● Information we need to store along the way:
○ The se t you’ve built so far
○ The remaining e lements in the original se t

What defines our jury selection decision tree?

● Decision at each step (each leve l of the tree):
○ Are we going to include a given candidate in our jury?

● Options at each decision (branches from each node):
○ Include candidate
○ Don’t include candidate

● Information we need to store along the way:
○ The collection of candidates making up our jury so far
○ The remaining candidates to conside r
○ The sum total bias of the current jury so far

Jury Selection Pseudocode

● Problem Se tup
○ Assume that we have de fined a custom juror struct, which packages up important information

about a juror (the ir name and the ir bias, represented as an int)

Jury Selection Pseudocode

● Problem Se tup
○ Assume that we have de fined a custom juror struct, which packages up important information

about a juror (the ir name and the ir bias, represented as an int)
○ Given a Vector<juror> (the ir may be duplicate name/bias pairs among candidates), we want

to print out all possible unbiased jurie s that can be formed

Jury Selection Pseudocode

● Problem Se tup
○ Assume that we have de fined a custom juror struct, which packages up important information

about a juror (the ir name and the ir bias, represented as an int)
○ Given a Vector<juror> (the ir may be duplicate name/bias pairs among candidates), we want

to print out all possible unbiased jurie s that can be formed

● Recursive Case
○ Se lect a candidate that hasn't been conside red ye t.
○ Try not including them in the jury, and recursive ly find all possible unbiased jurie s.
○ Try including them in the jury, and recursive ly find all possible unbiased jurie s.

Jury Selection Pseudocode

● Problem Se tup
○ Assume that we have de fined a custom juror struct, which packages up important information

about a juror (the ir name and the ir bias, represented as an int)
○ Given a Vector<juror> (the ir may be duplicate name/bias pairs among candidates), we want

to print out all possible unbiased jurie s that can be formed

● Recursive Case
○ Se lect a candidate that hasn't been conside red ye t.
○ Try not including them in the jury, and recursive ly find all possible unbiased jurie s.
○ Try including them in the jury, and recursive ly find all possible unbiased jurie s.

● Base Case
○ Once we 're out of candidates to conside r, check the bias of the current jury. If 0 , display them!

Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias){

if (allCandidates.isEmpty()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove(0);

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove(currentJury.size() - 1);

allCandidates.insert(0, currentCandidate);
}

}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0);

}

Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias){

if (allCandidates.isEmpty()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove(0);

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove(currentJury.size() - 1);

allCandidates.insert(0, currentCandidate);
}

}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0);

}

Helper function: Extra
variable to keep track

of total bias

Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias){

if (allCandidates.isEmpty()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove(0);

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove(currentJury.size() - 1);

allCandidates.insert(0, currentCandidate);
}

}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0);

}

Base case: Only display
juries with no total bias

Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias){

if (allCandidates.isEmpty()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove(0);

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove(currentJury.size() - 1);

allCandidates.insert(0, currentCandidate);
}

}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0);

}

Recursive case: Consider
juries both with and
without this person

Jury Selection
Optimization

Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias){

if (allCandidates.isEmpty()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove(0);

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove(currentJury.size() - 1);

allCandidates.insert(0, currentCandidate);
}

}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0);

}

Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias){

if (allCandidates.isEmpty()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove(0);

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove(currentJury.size() - 1);

allCandidates.insert(0, currentCandidate);
}

}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0);

}

Vector addition/removal can
be an expensive operation.

Can we do better?

Optimizing Subset Creation

● The core component of subse t gene ration includes visiting each e lement once ,
and making a decision about whe the r to include it or not

Optimizing Subset Creation

● The core component of subse t gene ration includes visiting each e lement once ,
and making a decision about whe the r to include it or not

● Previously, we have done so by arbitrarily picking the "first" e lement in the
collection as the one under conside ration, and then removed it (expensive)
from the collection for future recursive calls.

Optimizing Subset Creation

● The core component of subse t gene ration includes visiting each e lement once ,
and making a decision about whe the r to include it or not

● Previously, we have done so by arbitrarily picking the "first" e lement in the
collection as the one under conside ration, and then removed it (expensive)
from the collection for future recursive calls.

● Key Idea: Instead of modifying the collection of e lements, le t's just keep track
of our current place in the collection (index of the element that is currently
under consideration).

Jury Selection Code v2.0
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias){

if (allCandidates.isEmpty()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove(0);

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove(currentJury.size() - 1);

allCandidates.insert(0, currentCandidate);
}

}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0);

}

Jury Selection Code v2.0
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury,

int currentBias, int index){
if (allCandidates.isEmpty()){

if (currentBias == 0){
displayJury(currentJury);

}
} else {

juror currentCandidate = allCandidates[0];
allCandidates.remove(0);

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove(currentJury.size() - 1);

allCandidates.insert(0, currentCandidate);
}

}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0, 0);

}

Jury Selection Code v2.0
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index){

if (index == allCandidates.size()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove(0);

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove(currentJury.size() - 1);

allCandidates.insert(0, currentCandidate);
}

}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0, 0);

}

Jury Selection Code v2.0
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index){

if (index == allCandidates.size()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[index];

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias, index + 1);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias,

index + 1);
currentJury.remove(currentJury.size() - 1);

}
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0, 0);

}

Jury Selection Code v2.0
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index){

if (index == allCandidates.size()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[index];

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias, index + 1);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias,

index + 1);
currentJury.remove(currentJury.size() - 1);

}
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0, 0);

}

No more expensive
addition/removal of
possible candidates!

Takeaways

● Being able to enumerate all possible subse ts and inspect subse ts with ce rtain
constraints can be a powerful problem-solving tool.

● Maintaining an index of the current e lement unde r conside ration for
inclusion/exclusion in a collection is the most e fficient way to keep track of the
decision making process for subse t gene ration

Jury Selection Code v2.0
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index){

if (index == allCandidates.size()){
if (currentBias == 0){

displayJury(currentJury);
}

} else {
juror currentCandidate = allCandidates[index];

findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias, index + 1);
currentJury.add(currentCandidate);
findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias,

index + 1);
currentJury.remove(currentJury.size() - 1);

}
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
Vector<juror> jury;
findAllUnbiasedJuriesHelper(allCandidates, jury, 0, 0);

}

Summary

Two ways of doing it

● Choose explore undo
○ Uses pass by re fe rence ; usually with

large data structures
○ Explicit unchoose step by "undoing"

prior modifications to structure
○ E.g. Gene rating subse ts (one se t

passed around by re fe rence to track
subse ts)

● Copy edit explore
○ Pass by value ; usually when memory

constraints aren’t an issue
○ Implicit unchoose step by virtue of

making edits to copy
○ E.g. Building up a string over time

Three use cases for backtracking

1. Generate /count all solutions
(enumeration)

2. Find one solution (or prove
existence)

3. Pick one best solution

General examples of things you can do:
- Pe rmutations
- Subse ts
- Combinations
- e tc.

Backtracking recursion:
Exploring many possible solutions

Overall paradigm: choose /explore /unchoose

Goals for this Course

Learn how to model and solve complex problems
with computers.

• Explore common abstractions for
representing problems.

• Harness recursion and understand how to
think about problems recursively.

• Analyze different approaches for solving
problems: efficiency, optimization, and ethics.

Goals for this Course

Learn how to model and solve complex problems
with computers.

• Explore common abstractions for
representing problems.

• Harness recursion and understand how to
think about problems recursively.

• Analyze different approaches for solving
problems: efficiency, optimization, and ethics.

Goals for this Course

Learn how to model and solve complex problems
with computers.

• Explore common abstractions for
representing problems.

• Harness recursion and understand how to
think about problems recursively.

• Analyze different approaches for solving
problems: efficiency, optimization, and ethics.

Goals for this Course

Learn how to model and solve complex problems
with computers.

• Explore common abstractions for
representing problems.

• Harness recursion and understand how to
think about problems recursively.

• Analyze different approaches for solving
problems: efficiency, optimization, and ethics.

Goals for this Course

Learn how to model and solve complex problems
with computers.

• Explore common abstractions for
representing problems.

• Harness recursion and understand how to
think about problems recursively.

• Analyze different approaches for solving
problems: efficiency, optimization, and ethics.

What’s next?

vectors + grids

stacks + queues

sets + maps

Object-Oriented
Programming

arrays

dynamic memory
management

linked data structures

algorithmic
analysistesting

Roadmap

Life after CS106B

User/client
Implementation

recursive
problem -solving

Core
Tools

More Recursive Backtracking

	Recursive Backtracking: Enumeration
	Roadmap
	Roadmap
	Today’s question
	Today’s topics
	Slide Number 6
	Review�(advanced recursion patterns and �introduction to recursive backtracking)
	Why do we use recursion?
	Elegance (Towers of Hanoi)
	Efficiency (Binary Search)
	Two types of recursion
	Dynamic (Coin Sequences + Decision Trees)
	Using backtracking recursion
	Using backtracking recursion
	Using backtracking recursion
	Using backtracking recursion
	Using backtracking recursion
	Decision tree: Find all permutations of "cat"
	Decision tree: Find all permutations of "cat"
	Decision tree: Find all permutations of "cat"
	Word scramble code
	Permutations Code
	Permutations Code
	Permutations Code
	Permutations Code
	Permutations Code
	Permutations Code
	Takeaways
	Takeaways
	Takeaways
	Takeaways
	How can we leverage backtracking recursion to solve interesting problems?
	Slide Number 33
	Slide Number 34
	The Startling Truth?
	The Startling Truth?
	The Startling Truth?
	The Startling Truth?
	The Startling Truth?
	The Startling Truth?
	The Startling Truth?
	The Startling Truth?
	The Startling Truth?
	Is there really just one �nine-letter word with this property?
	How can we determine if a word is shrinkable?
	What defines our shrinkable decision tree?
	What defines our shrinkable decision tree?
	What defines our shrinkable decision tree?
	What defines our shrinkable decision tree?
	What defines our shrinkable decision tree?
	What defines our shrinkable decision tree?
	Non-shrinkability
	Non-shrinkability
	Non-shrinkability
	Non-shrinkability
	How can we determine if a word is shrinkable?
	Lexicon
	Let’s code it!
	Takeaways
	Announcements
	Announcements
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Subsets
	Slide Number 79
	What defines our subsets decision tree?
	What defines our subsets decision tree?
	What defines our subsets decision tree?
	Decision tree
	Decision tree
	Decision tree
	Decision tree
	Decision tree
	What defines our subsets decision tree?
	Decision tree
	Decision tree
	Decision tree
	Decision tree
	Decision tree
	Decision tree
	How do recursive backtracking solutions look different when data structures are involved?
	Let’s code it!
	Takeaways
	Takeaways
	Takeaways
	Takeaways
	Takeaways
	Takeaways
	Decision tree
	Takeaways
	Takeaways
	Takeaways
	Application: Choosing an Unbiased Jury
	Jury Selection
	Slide Number 109
	Slide Number 110
	Jury Selection
	Jury Selection
	Jury Selection
	What defines our subsets decision tree?
	What defines our jury selection decision tree?
	Jury Selection Pseudocode
	Jury Selection Pseudocode
	Jury Selection Pseudocode
	Jury Selection Pseudocode
	Jury Selection Code
	Jury Selection Code
	Jury Selection Code
	Jury Selection Code
	Jury Selection Optimization
	Jury Selection Code
	Jury Selection Code
	Optimizing Subset Creation
	Optimizing Subset Creation
	Optimizing Subset Creation
	Jury Selection Code v2.0
	Jury Selection Code v2.0
	Jury Selection Code v2.0
	Jury Selection Code v2.0
	Jury Selection Code v2.0
	Takeaways
	Jury Selection Code v2.0
	Summary
	Backtracking recursion: �Exploring many possible solutions
Overall paradigm: choose/explore/unchoose
	Goals for this Course
	Goals for this Course
	Goals for this Course
	Goals for this Course
	Goals for this Course
	What’s next?
	Roadmap
	More Recursive Backtracking

