Recursive Backtracking:
Enumeration

What is a game that would be easy to play
if you had the ability to quickly think
of all possible moves or plays?

(please put your answers in the chat)
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How can we leverage

TOd ay’S backtracking recursion to
que Sti()n solve interesting

problems?




. Review

Today's
topics
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Review

(advanced recursion patterns and
introduction to recursive backtracking)



Why do we use recursion?

e FElegance
o Allows us to solve problems with very clean and concise code

e Efficiency
o Allows us to accomplish better runtimes when solving problems

e Dynamic
o Allows us to solve problems that are hard to solve teratively



Elegance (Towers of Hanoi

source

auxiliary destination

void findSolution(int n, char source, char dest,
char aux) {
if (n == 1) {
moveSingleDisk (source, dest);
} else {
findSolution(n - 1, aux, dest);
moveSingleDisk (source, dest);

findSolution(n - 1, dest,

source,

aux, source) ;

void findSolutionIterative(int n, char source, char dest, char aux) {
int numMoves = pow(2, n) - 1; // total number of moves necessary

// if number of disks is even, swap dest and aux posts
if (n % 2 == 0) {

char temp = dest;

dest = aux;

aux = temp;
}

Stack<int> srcStack;

for (int i =n; i > 0; i--) {
srcStack.push (i) ;

}

cout << srcStack << endl;

Stack<int> destStack;

Stack<int> auxStack;

// Determine next move based on how many moves have been made so far
for (int i = 1; i <= numMoves; i++) {
switch (1 % 3) {
case 1:
if (srcStack.isEmpty() ||
('destStack.isEmpty () && srcStack.peek() > destStack.peek())) {
srcStack.push (destStack.pop()) ;
moveSingleDisk (dest, source);
} else {
destStack.push (srcStack.pop()) ;
moveSingleDisk (source, dest);
}
break;
case 2:
if (srcStack.isEmpty() ||
('auxStack.isEmpty () && srcStack.peek() > auxStack.peek())) {
srcStack. push (auxStack.pop()) ;
moveSingleDisk (aux, )
} else {
auxStack.push (srcStack.pop()) ;
moveSingleDisk (source, aux);

}
break;
case 0:
if (destStack.isEmpty() ||
('auxStack.isEmpty () && destStack.peek() > auxStack.peek())) {
destStack.push (auxStack.pop()) ;
moveSingleDisk (aux, dest);
} else {
auxStack.push (destStack.pop()) ;
moveSingleDisk (dest, aux);

}

break;




Efficiency (Binary Search)

e Jeverage the structure in sorted data to

when searching for an element
o  Onlydo a direct comparison with the
middle element in the list
o Recursively search the left halfif the
element is less than the middle
o  Recursively search the right halfif the
elementis greater than the middle

e Binary search has logarithmic Big-O:

o Enables efficient performance ofsets and
maps

Binary Search Linear Search
Input Size Runtime (s) Input Size Runtime (s)
1000000 0.064 10000 0.096
2000000 0.072 20000 0.189
4000000 0.082 40000 0.368
8000000 0.097 8000000 0.767
16000000 | 0.111 160000 1.387
32000000 | 0.121 320000 2.746
64000000 | 0.14 640000 6.154




Two types of recursion

Basic recursion Backtracking recursion

e One repeated task that builds up e Build up many possible solutions
a solution as you come back up through multiple recursive calls at
the call stack each step

e The finalbase case defines the e Sced the mitial recursive call with
initial seed ofthe solution and an “empty” solution
cach call contributes a little bit to e Ateach base case, you have a
the solution potential solution

e Initial call to recursive function
produces final solution



Dynamic (Coin Sequences + Decision Trees)

e The ofthe tree corresponds to e To exhaustively explore the entire
the we have to search space, we must
make. The at each decision

point corresponds to the

Flip heads Empty Flip tails
l sequence l
Flip heads H Flip tails 'F].ipSLE‘F‘t -1 Flip heads T Flip tails
HH HT flipsLeft = @ TH TT




Using backtracking recursion

e There are 3 main categories of problems that we can solve by using
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Using backtracking recursion

e There are 3 main categories of problems that we can solve by using
backtracking recursion:

We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem
We can find one specific solution to a problem or prove that one exists

o  We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,
including

© And many, many more
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Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

C

"at"

a-t

\ 4 \ 4
HtH H "t" C n Ha "
t c a

"cat"

: For every letter remaining, add that letter to the current permutation and recurse!

t
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e
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Word scramble code



Permutations Code

void listPermutations(string s) {
listPermutationsHelper(s, "");

void listPermutationsHelper (string remaining, string soFar) ({
if (remaining.empty()) {
cout << soFar << endl;
} else {
for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr (0, i) + remaining.substr(i+l);

listPermutationsHelper (rest, soFar + nextLetter);



Permutations Code .
Use of recursive helper

void listPermutations(string s) { funCtion Wlth empty

listPermutationsHelper(s, ""); Strin as Startin Oint
} < g gp

void listPermutationsHelper (string remaining, string soFar) ({
if (remaining.empty()) {
cout << soFar << endl;

} else {
for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr (0, i) + remaining.substr(i+l);

listPermutationsHelper (rest, soFar + nextLetter);
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cout << soFar << endl;
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Permutations Code

Decisions et

void listPermutations(string s) { tO be mad
listPermutationsHelper(s, "");

Decisions
already magle

void listPermutationsHelper (string remaining, string soFar) ({

if (remaining.empty()) { €\
cout << soFar << endl; No decisions renain
} else {

for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr (0, i) + remaining.substr(i+l);

listPermutationsHelper (rest, soFar + nextLetter);



Permutations Code

Decisions et .
. | _ Decisions
void listPermutations(string s) { to be mad
listPermutationsHelper(s, ""); already made
} (
void listPermutationsHelper (string remaining, string soFar) ({ 'Ifyqiﬂ
if (remaining.empty()) { €\ . .
cout << soFar << endl; No decisins rennin (lilms f(l' next d@ClSl(Il
} else {
for (int i = 0; i < remaining.length(); i++) { )
char nextLetter = remaining[i]; .

string rest = remaining.substr (0, i) + remaining.substr(i+l);

listPermutationsHelper (rest, soFar + nextLetter);




Takeaways

e The specific modelofthe general pattern in
backtracking recursion that we applied here can be thought ofas

o Since we passed all our parameters by value, each recursive stack frame had its own
independent copy ofthe string data that it could edit as appropriate
o The "unchoose" step is since there is no need to undo anything by virtue ofthe fact

that editing a copy only has local consequences.
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Takeaways
e The specific modelofthe general pattern in

backtracking recursion that we applied here can be thought ofas

e Ateach step ofthe recursive backtracking process, it is important to keep
track of and
e Backtracking recursion can have at each level

e Use ofhelper functions and mitial empty params that get built up is common



How can we leverage
backtracking recursion to solve
mmterestng problems?



. A Little Word Puzzle



“What nine-letter word can be
reduced to a single-letter word
one letter at a time by removing
letters, leaving it a legal word at
each step?”



The Startling Truth?
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The Startling Truth?




The Startling Truth?




Is there really just one
nine-le tter word with this property?




How can we determine if a word is shrinkable?

e A shrinkable word is a word that can be reduced down to one letter by
removing one character at a time, leaving a word at each step.

e Ideca:Llet’s use a decision tree to remove letters and determine shrinkability !




What defines our shrinkable decision tree?

e Decision at cach step (cach level ofthe tree):
o What letter are going to remove?

e Options at each decision (branches from each node):
o The remaming letters in the string

e Information we need to store along the way:
o The shrinking string



What defines our shrinkable decision tree?
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What defines our shrinkable decision tree?

We can find a path through
cart the tree in two different ways!
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Non-shrinkability cusp

Examples from Chris Gregg and Keit
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Non-shrinkability - cuse
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How can we determine if a word is shrinkable?

e Base cases:

o Astring thatis not a word i1s not a shrinkable word.
o Any single-letter word 1s shrinkable (A, [, and O).

e Recursive cases:

o A multi-letter word is shrinkable if you can remove a letter to form a
shrinkable word.

o A multi-letter word is not shrinkable if no matter what letter you remove,
it’s not shrinkable.



Lexicon

e Iexiconis a helpful ADT provided by the Stanford C++libraries (in lexicon.h)
that is used specifically for storing many words that make up a dictionary

e Generally, Lexicons offer faster lookup than normal Sets, which is why we
choose to use them when dealing with words and large dictionaries

e Lexicon lex("res/EnglishWords.txt"); // create from file
lex.contains ("koala"); // returns true
lex.contains ("zzzzz"); // returns false
lex.containsPrefix ("£fi"); // returns true if there are
any words starting with "fi" in the dictionary



Let’'s code it!



Takeaways

e This is another example of copy-edit-recurse to choose, explore, and then
implicitly unchoose!

e In this problem, we re using backtracking to find if a solution exists .
o Notice the way the recursive case is structured:

for all options at each decision point:
1f recursive call returns true:
return true;
return false if all options are exhausted;



Announcements



Announcements

 Assignment 3 was released last Thursday.
The Assignment 3 YEAH session slides and recording have been posted.
This assignment is challenging and quite long; please come to LalR or office
hours to check in with the teaching team if you need anything!

« We've released practice problems and information about the diagnostic.
You’llbe able to take the diagnostic over the weekend.

Please make sure to read the instructions on the
,and verify that you can access your Gradescope account before
the weekend!


https://web.stanford.edu/class/cs106b-8/assessments/diagnostic/

Subsets
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Given a group ofpeople, suppose we wanted to generate all possible teams, or

subsets, ofthose people:
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Subsets

Given a group ofpeople, suppose we wanted to generate all possible teams, or

subsets, ofthose people:

{}
{“Nick”}

{“Kylie”}

{*“Trip”} e
{“Nick”, “Kylie”}

{“Nick”, “Trip”}

{“Kylie”, “Trip”}

{“Nick”, “Kylie”, “Trip”}




It's time to draw a treell!
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What defines our subsetsdecision tree?

e Decision at cach step (cach level ofthe tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element
o Don’t include element

e Information we need to store along the way:

o The setyou’ve built so far
o The remaimning elements in the original set
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What defines our subsetsdecision tree?

e Decision at cach step (cach level ofthe tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element

o Don’t include element

e Information we need to store along the way:
o The setyou’ve built so far
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Decision tree

Don't include Nick Empty set Include Nick Remaining: {Nick”, “Kylie”, “Trip”}

} !

Mo Kylie Kylie Mo Kylie H Kylie R s . fe TN T s BEIREY)
emaining: {Kylie”, “Trip”}

s e ' T's AR IREL)
No Trip Trip No Trip m Trip No Trip ﬂ Trip No Trip Hm Trip Remaming: {Trip”}
Y 2! 2R (R (g Remaining: §

: No people remaining to choose from!




Decision tree

Don't include Nick Empty set Include Nick Remaining: {Nick”, “Kylie”, “Trip”}

} !

Mo Kylie Kylie Mo Kylie H Kylie R s Y, ST INY s RFIREY)
emaining: {Kylie”, “Trip”}

s e ' T's AR IREL)
No Trip Trip No Trip m Trip No Trip ﬂ Trip No Trip Hm Trip Remaming: {Trip”}

m HE& il A Remaining: §
A

: Pick someone in the set. Choose to mclude or not include them.




How do recursive backtracking
solutions look different when
data structures are mvolved?



Let’'s code it!



Takeaways

e This is our first time seeing an explicit “unchoose” step

o This is necessary because we re passing sets by reference and editing
them!
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// remove this element from possible choices
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EXplore listSubsetsHelper(remaining, chosen); // do not add elem to chosen
(part 2) chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // cdd clem o chosen

chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we re passing sets by reference and editing
them!

string elem = remaining.first();
// remove this element from possible choices
o remaining = remaining - elem;
EXpI|C|t listSubsetsHelper(remaining, chosen); // do not add elem to chosen
UnChOOSG chosen = chosen + elem;

. listSubsetsHelper(remaining, chosen); // add elem to chosen
(l.e. UndO) chosen = chosen - elem;

// add this element back to possible choices
remaining = remaining + elem;



Decision tree

Don’t include Nick Empty set Include Nick Remaining: {Nick”, “Kylie”, “Trip”’}
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Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we re passing sets by reference and editing
them!

string elem = remaining.first();
. . // remove this element from possible choices
Without this o - ,
remaining = remaining - elem;
Step, we COUIdistSubsetsHelper‘(r‘emaining, chosen); // do not add elem to chosen
osen = chosen + elem;
not explore thg

stSubsetsHelper(remaining, chosen); // add elem to chosen

other side of chosen = chosen = elem;
the tree // add this element back to possible choices

remaining = remaining + elem;



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we re passing sets by reference and editing
them!

e It’s important to consider not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each

recursive call. This might help you define your base case.




Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we re passing sets by reference and editing
them!

e It’s important to consider not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might help you define your base case.

e The subset problem contains themes we’ve seen in backtracking recursion:
o Building up solutions as we go down the decision tree
o Using a helper function to abstract away implementation details



Application: Choosing
an Unbiased Jury



Jury Selection

e The process ofjury selection involves processing a large poolofcandidates
that have been called for jury duty, and selecting some small subset ofthose

candidates to serve on the jury.
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their own biases that might sway the case.
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Jury Selection

e The process ofjury selection involves processing a large poolofcandidates
that have been called for jury duty, and selecting some small subset ofthose
candidates to serve on the jury.

e When selecting members ofa jury, each imdividual person will come mn with
their own biases that might sway the case.

e Ideally, we would like to select a jury that is

° — let's apply the
code that we just wrote!



What defines our subsetsdecision tree?

e Decision at cach step (cach level ofthe tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element
o Don’t include element

e Information we need to store along the way:

o The setyou’ve built so far
o The remaimning elements in the original set



What defines our decision tree?

e Decision at cach step (cach level ofthe tree):
o Are we going to include a given in our ?

e Options at each decision (branches from each node):
o Include
o Don’t include

e Information we need to store along the way:

o The of making up our so far
o The remaining to consider
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e Problem Setup

o Assume that we have defined a custom juror struct, which packages up important mformation

about a juror (their name and their bias, represented as an int)
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Jury Selection Pseudocode

e Problem Setup

o Assume that we have defined a custom juror struct, which packages up important mformation
about a juror (their name and their bias, represented as an int)

o Given a Vector<juror> (their may be duplicate name/bias pairs among candidates), we want
to print out all possible unbiased juries that can be formed

e Recursive Case
o Select a candidate that hasn't been considered yet.

o Trynot including them in the jury, and recursively find all possible unbiased juries.
o Try including them in the jury, and recursively find all possible unbiased juries.

e Base Case

o Once we're out of candidates to consider, check the bias ofthe current jury. If 0, display them!



Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int
currentBias) {
if (allCandidates.isEmpty()) {
if (currentBias == 0){
displayJdury (currentdury) ;
}
} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias)

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, O0);

}



Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int

currentBias) {
if (allCandidates.isEmpty()) {

it (currenthiss = 0) { Helper function: Extra

displayJury (currentdJury) ;

) variable to keep track

} else {

juror currentCandidate = allCandidates[0]; ()f t()tiil t)iiif;

allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias)

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

}

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, O0);

}



Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int

currentBias) {
if (allCandidates.isEmpty()) {
if (currentBias == 0) {

- displayJury (currentJury) ; Base Case: Only display
} else | juries with no total bias

juror currentCandidate = allCandidates[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias)

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

}

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, O0);

}



Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int

currentBias) {
if (allCandidates.isEmpty()) {

if (currentBias == 0) Recursive case: Consider

displayJdury (currentdury) ;

) juries both with and

} else {

juror currentCandidate = allCandidates[O0]; Without this person

allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

}

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, O0);

}



Jury Selection
Optimization



Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int
currentBias) {
if (allCandidates.isEmpty()) {
if (currentBias == 0){
displayJdury (currentdury) ;
}
} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias)

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, O0);

}



Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int
currentBias) {
if (allCandidates.isEmpty()) {

if (currentBias == 0) { Vector addition/removal can

displayJdury (currentdury) ;

} olse 1 be an expensive operation.
e i Can we do better?

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias)

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

}

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, O0);

}



Optimizing Subset Creation

e The core component of subset generation includes visiting each element once,

and making a decision about whether to include it or not
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e Previously, we have done so by arbitrarily picking the "first" element in the
collection as the one under consideration, and then removed it (expensive)

from the collection for future recursive calls.




Optimizing Subset Creation

e The core component of subset generation includes visiting each element once,
and making a decision about whether to include it or not

e Previously, we have done so by arbitrarily picking the "first" element in the
collection as the one under consideration, and then removed it (expensive)
from the collection for future recursive calls.

e Key ldea: Instead of modifying the collection of elements, let's just keep track

of our current place in the collection (index of the element that is currently
under consideration ).



Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int
currentBias) {
if (allCandidates.isEmpty()) {
if (currentBias == 0){
displayJdury (currentdury) ;
}
} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias)

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, O0);

}



Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury,
int currentBias, int index) {
if (allCandidates.isEmpty()) {
if (currentBias == 0) {
displayJdury (currentdJury) ;
}
} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias)

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);

}



Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int
currentBias, int index) {
if (index == allCandidates.size()) {
if (currentBias == 0){
displayJury (currentdJury) ;
}
} else {
juror currentCandidate = allCandidates[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias)

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);

}



Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int
currentBias, int index) {
if (index == allCandidates.size()) {
if (currentBias == 0) {
displayJury (currentdJury) ;
}
} else {
juror currentCandidate = allCandidates[index] ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias, index + 1);

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentdJury, currentBias + currentCandidate.bias,
index + 1) ;

currentJury.remove (currentJury.size() - 1);

}

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);



Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int
currentBias, int index) { .
if (index == allCandidates.size()) { N m p
if (currentBias == 0) { 0 ore ex enS|ve
displayJury (currentdJury) ;

} addition/removal of

} else {

juror currentCandidate = allCandidates[index]; pOSSible CandidateS!

findAllUnbiasedJuriesHelper (allCandidates, currentdJury, currentBias, index + 1);

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentdJury, currentBias + currentCandidate.bias,
index + 1) ;

currentJury.remove (currentJury.size() - 1);

}

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);



Takeaways

e Being able to enumerate all possible subsets and inspect subsets with certain
constraints can be a powerful problem-solving tool.

e Maintaining an index ofthe current element under consideration for
inclusion/exclusion in a collection is the most efficient way to keep track ofthe

decision making process for subset generation




Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentdury, int
currentBias, int index) {
if (index == allCandidates.size()) {
if (currentBias == 0) {
displayJury (currentdJury) ;
}
} else {
juror currentCandidate = allCandidates[index] ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias, index + 1);

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentdJury, currentBias + currentCandidate.bias,
index + 1) ;

currentJury.remove (currentJury.size() - 1);

}

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);



Summary



Backtracking recursion:
Exploring many possible solutions

Overall paradigm: choose/explore/unchoose

Two ways of doing it Three use cases for backtracking
® Choose explore undo , l. Generate/count all solutions
o Uses pass by reference; usually with )
large data structures (e nume ratlon)
o Explicit unchoose step by "undoing" 2 Find one solution (OI‘ prove
prior modifications to structure .
o E.g. Generating subsets (one set ex1stence)
passed around by reference to track 3. Pick one best solution
subsets)

e Copy edit explore

o  Pass by value; usually when memory General examples ofthings you can do:

constraints aren’t an issue - Permutations
o Implicit unchoose step by virtue of - Subsets
making edits to copy - Combinations

o E.g.Building up a string over time - eftc.



Goals for this Course

Learn how to model and solve complex problems
with computers.
Explore common abstractions for

representing problems.

Harness recursion and understand how to
think about problems recursively.

Analyze different approaches for solving
problems: efficiency, optimization, and ethics.



Goals for this Course

Learn how to model and solve complex problems
with computers.
Explore common abstractions for

representing problems.

Harness recursion and understand how to
think about problems recursively.

Analyze different approaches for solving
problems: efficiency, optimization, and ethics.



Goals for this Course

Learn how to model and solve complex problems
with computers.
Explore common abstractions for

representing problems.

Harness recursion and understand how to
think about problems recursively.

Analyze different approaches for solving
problems: efficiency, optimization, and ethics.



Goals for this Course

Learn how to model and solve complex problems
with computers.

Explore common abstractions for
representing problems.

Harness recursion and understand how to
think about problems recursively.

Analyze different approaches for solving
problems: efficiency, optimization, and ethics.



Goals for this Course

Learn how to model and solve complex problems
with computers.
Explore common abstractions for

representing problems.

Harness recursion and understand how to
think about problems recursively.

Analyze different approaches for solving
problems: efficiency, optimization, and ethics.



What's next?



Object-Oriented
Roadm ap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106

Diagnostic

’W_—

testing analysis




More Recursive Backtracking
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