
Beyond Efficiency:
Algorithmic Analysis and

Social Impact
What has been the most interesting application of

recursion that you've encountered so far?
(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

testing

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

Core
Tools

algorithmic
analysis

recursive
problem-solving

Today’s
question

What problems should
we solve with recursive
backtracking?

Today’s
topics

1. Review and Recursion
Overview

2. Beyond Efficiency:
Algorithmic Analysis and
Social Impact

3. Optimization and
Gerrymandering

Solving mazes with
Depth- First Search (DFS)

What defines our maze decision tree?

● Decision at each step (each level of the tree):
○ Which valid move will we take?

● Options at each decision (branches from each node):
○ All valid moves (in bounds, not a wall, not previously visited) that are either

North, South, East, or West of the current location

● Information we need to store along the way:
○ The path we’ve taken so far (a Stack we’re building up)
○ Where we’ve already visited
○ Our current location

Pseudocode
● Our helper function will have as parameters: the maze itself, the path we’re building up,

and the current location.
○ Idea: Use the boolean Grid (the maze itself) to store information about whether or

not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) → This works with our existing generateValidMoves() function

● Recursive case: Iterate over valid moves from generateValidMoves() and try adding
them to our path
○ If any recursive call returns true, we have a solution
○ If all fail, return false

● Base case: We can stop exploring when we’ve reached the exit → return true if the
current location is the exit

Breadth-First Search vs. Depth-First Search
Which do you think will be faster?

Generating Combinations

Option 2:
Include this person

You need at least five US Supreme Court
justices to agree to set a precedent.

What are all the ways you can pick five
justices of the US Supreme Court?

Combinations versus Subsets

● Making combinations is very similar to our recursive process for generating
subsets!

● The differences:
○ We’re constraining the subsets’ size.
○ We’re building up a set of all valid subsets of that particular size (i.e.

combinations).

● Instead of printing out subsets in our base case, we have to return individual
sets in our base case and then build up and return our resulting set of sets in
our recursive case

You now know how to use
recursion to view problems
from a different perspective
that can lead to short and
elegant solutions.

Organizing Your
Recursive Toolbox

Two types of recursion

Basic recursion

● One repeated task that builds up
a solution as you come back up
the call stack

● The final base case defines the
initial seed of the solution and
each call contributes a little bit to
the solution

● Initial call to recursive function
produces final solution

Backtracking recursion

● Build up many possible solutions
through multiple recursive calls at
each step

● Seed the initial recursive call with
an “empty” solution

● At each base case, you have a
potential solution

We’ve seen lots of different backtracking strategies...

Questions to ask yourself when planning your strategy:

● What does my decision tree look like? (decisions, options, what to keep track of)
● What are our base and recursive cases?
● What’s the provided function prototype and requirements? Do we need a helper

function?
● Do we care about returning or keeping track of the path we took to get to our solution?
● Which of our three use cases does our problem fall into? (generate/count all solutions,

find one solution/prove its existence, pick one best solution)
● What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
● What are we building up as our “many possibilities” in order to find our solution?

(subsets, permutations, combinations, or something else)

Two ways of doing it

● Choose explore undo
○ Uses pass by reference; usually with

large data structures
○ Explicit unchoose step by "undoing"

prior modifications to structure
○ E.g. Generating subsets (one set

passed around by reference to track
subsets)

● Copy edit explore
○ Pass by value; usually when memory

constraints aren’t an issue
○ Implicit unchoose step by virtue of

making edits to copy
○ E.g. Building up a string over time

Three use cases for backtracking

1. Generate/count all solutions
(enumeration)

2. Find one solution (or prove
existence)

3. Pick one best solution

General examples of things you can do:
- Permutations
- Subsets
- Combinations
- etc.

Backtracking recursion: Exploring many possible solutions
Overall paradigm: choose/explore/unchoose

You’ve seen how to use
recursive backtracking to
determine whether something
is possible and, if so, to find
some way to do it.

You’ve seen how to use recursive
backtracking to enumerate all
objects of some type, which you
can use to find the optimal
solution to a problem.

The
Knapsack
Problem

Pseudocode

● Recursive case:
○ Select an unconsidered item based on the index.
○ Recursively calculate the values both with and without the item.
○ Return the higher value.

● Base cases:
○ No remaining capacity in the knapsack → return 0

(not a valid combination with weight <= 5)
○ No more items to choose from → return current value

Let’s see the code!

Takeaways

● Finding the best solution to a problem (optimization) can often be thought of as
an additional layer of complexity/decision making on top of the recursive
enumeration we've seen before

● For "hard" problems, the best solution can only be found by enumerating all
possible options and selecting the best one.

● Creative use of the return value of recursive functions can make applying
optimization to an existing function straightforward.

Software Design and Optimization

Algorithmic Bias Poll

Software is ubiquitious

Who might be impacted by
the software?

Who should be at the
table helping to design
the software?

Gaining Perspective

Breakout Room Discussion #1

There are two discussion prompts:

● Does the background of
 the programmer matter?

● How can we involve those impacted
 in development of software?

 Moral Relativity

Who decides the target audience?

Who needs the app or software the most?

If there are unintended consequences, are these consequences fairly
distributed among groups of people?

How do we define fairness?

If we need funds to develop our software,
who is able to buy it and does the cost to develop it
inherently make it inequitable?

Should the government play a role in regulating this?

Software Usage Labels?

Breakout Room Discussion #2

Would software usage labels be helpful?

What would the labels say?

Announcements

Announcements

• The mid-quarter diagnostic is coming up at the end of this week.

• You will have a 72-hour period of time from Friday to Sunday to complete the diagnostic.

• The diagnostic is designed to take about an hour and a half to complete, but you can have up to 3
hours to work on it if you so choose.

• The diagnostic will be administered digitally using Gradescope.

• A practice diagnostic and many additional review materials have been posted on the diagnostic
page.

• Assignment 3 is due on Thursday, July 15 at 11:59pm.

http://web.stanford.edu/class/cs106b/assessments/diagnostic/

Gerrymandering &
Algorithmic Thinking

based on slides created by Katie Creel

Today’s
question

What problems should
we solve with recursive
backtracking?

History of Voter Suppression

15th Amendment to the US Constitution (1870)

The “right of citizens of the United States to vote shall not be denied
or abridged by the United States or by any state on account of race,
color, or previous condition of servitude.”

Addresses racial gerrymandering, which abridges the right to vote
on account of race.

Redistricting for House Elections

435 Districts of
(roughly) equal
population.
Each elects a
Representative

... but
populations
shift over time.

US Census
measures
population
every 10 years

... so redistrict
based on the
new Census.

Precincts: tiny boxes

Districts: bigger ... boxes?

HISTORY OF
GERRYMANDERING

In order to find out, we need to understand the ...

“The Gerry Mander” (1812)

The Computational Problem of Redistricting

1. count residents (Census)
2. apportion Congressional Representatives to the states
3. partition the states by sorting precincts into districts

The Math (combinatorics) Problem of Redistricting
If a state has n residents (with attributes) and k
Representatives, how to form k groups of
approximately size n out of census blocks k in
accordance with various rules and values.

Ways Voting Rights can be Restricted

● There are four
districts, each with 9
people.

● 36 people total
● 20 are in the majority

group, 16 are in the
minority group

Ways Voting Rights can be Restricted
● If the minority and

majority groups in are
politically polarized and
tend to prefer different
parties, we would
expect 2 candidates
from each party to be
elected.

Racially Polarized Voting

only 1 minority-preferred candidate elected 0 minority-preferred candidates elected

1965: Voting Rights Act

“The Civil Rights Division has the responsibility for enforcement of
provisions of the Voting Rights Act that seek to ensure that
redistricting plans do not discriminate on the basis of race, color,
or membership in a protected language minority group.”
“[The Civil Rights Act] prohibits not only election-related practices
and procedures that are intended to be racially discriminatory, but
also those that are shown to have a racially discriminatory result.”

Racial Redistricting: Example of Packing a District
Republican lawmakers in the state, after the 2010 census, had redrawn the map to add more black
voters into Districts 1 and 12. The Supreme Court concluded 5-3 that North Carolina violated the
Equal Protections Clause of the 14th Amendment by separating voters in different districts on the
basis of race without “sufficient justification” for doing so.

Partisan Gerrymandering defined

This is redistricting for the purpose of
gaining or preserving an advantage
for one political party at the cost
of equitable political representation
for voters.

Why has Gerrymandering Gotten Worse?
Veteran redistricter: “Give the chairman of a state redistricting committee a
powerful enough computer and neighborhood-block-level Census data, so that
he suddenly discovers he can draw really weird and aggressive districts—and
he will.”

Software + big data making a problem worse?

● New Software: Maptitude, Red Appl, and autoBound
● New Data: block-by-block census data

What Problem-Solving Technique
or Algorithm Should We Use?

Recursion to the Rescue!

● Exhaustive algorithm -- generate all the possible solutions,
 constrained by our rules and ideally matched to our values.

● Recursive backtracking (choose-explore-unchoose)
 to find all the potential districting maps

● Optimize: identify the worst (or best!) maps

CONSTRAINTS AND PRINCIPLES

What are our metrics?

How should we redistrict responsibly?

Principle 1: One person, one vote

“… as nearly as is practicable
one man’s vote in a
Congressional election is
worth as much as another’s.”

One Person, One Vote:
The Efficiency Gap Metric
• Any vote cast for the

losing party is a
wasted vote for that
party

• Any vote cast for the
winning party that was
more than the simple
majority needed to win
is also a wasted vote
for that party

One Person One Vote:
The Efficiency Gap Metric

The circled votes on the top
are “wasted” in that they
didn’t influence the outcome
in that district.

6 Congressional Districts

Lime Party wins 4 Congressional seats.
Teal Party wins 2 seats.

51%

CALCULATING THE
EFFICIENCY GAP

Efficiency Gap (EG) =

abs(wasted green votes - wasted teal votes)

 total votes cast

Principle 2: Communities of Interest

Interpretation A:
a community of interest
is a community that
shares an identity group

Interpretation B:
a community of interest
is “compact” or
geographically
contiguous

Community of Interest:
IL-04: “The Earmuffs”
• Follows a

predominantly
Latine community

• Created in the
1990s; elected the
first Latine
representative to
Congress from the
Midwest.

Community of Interest:
IL-04: “The Earmuffs”
• Follows a

predominantly
Latine community

• Created in the
1990s; elected the
first Latine
representative to
Congress from the
Midwest.

Surrounds IL-07, a predominantly
African-American district

Interpretation B: Compactness

● Geography also matters for political representation
● People who live in the same physical area often have interests in common

just in virtue of their location

What are the Interests of Santa Clara County
& CA District 18?

• Silicon Valley
• Housing & Land Use Policy
• Transportation

Silicon Valley: A Different Story

● Semiconductors & microprocessor manufacturing (silicon!) in the
1950s-1990s by Fairchild, Hewlett-Packard, Intel, Apple, Atari, Xerox, etc.

● Hardware is mostly gone, but left behind are 23 Superfund sites
contaminated with toxic chemicals

● Highest density of Superfund sites in the country

● Groundwater is safe, but plumes of toxic gas can escape, including at
Google’s Quad Campus in 2012-2013

● What do we in Santa Clara Country have in common?
 A special desire to clean up our Superfund sites!

THE ROLE OF COMPUTER SCIENTISTS

PRINCIPLE 1: ONE PERSON, ONE VOTE

PRINCIPLE 2: COMMUNITIES OF INTEREST

What should we prioritize in redistricting?
And what is a legitimate way to choose?

Who Should Control Redistricting?
● Biggest problem: US is one of the few countries in which politicians

have control over redistricting.

● In most other countries, all redistricting is done by an independent
commission.

● Politicians districting based on their own interests is unfair on
either principle.

Consistency for Fairness

● However we balance these two, the same principles apply to
every district, regardless of who is in the majority

● Redistricting principles should not change based on local
circumstances (or politician interests)

● Easier to implement consistency with a non-partisan
independent commission

Community Control for Justice

● Allow local communities to directly vote on or otherwise choose
the balance of principles which should guide districting (and thus
their own representation).

● Have an independent non-partisan commission implement the
principles in drawing up a map.

Iterating and Revisiting our Solutions

● Sometimes our first algorithmic solution
does not work as expected

● The Voting Rights Act (VRA) attempts to
indicate the fair middle ground between
packing and cracking, but the
interpretation of the VRA has been closer
to packing

Ethics of Care
● Few social problems can be

solved exactly once by an
algorithm

● Any algorithmic solution should be
revisited often as society changes
and we understand its implications
better.

● Caring for an algorithm, and for the
community that relies on it, can
mean updating the data ... or
changing the algorithm and
implementation.

● Creating “living” algorithms and
machine learning models that can
grow and change over time is a
huge focus in data science and AI
right now.

Roles you will be ready to take on after CS106B

● Make better systems yourself!

● Using your CS106B knowledge to advocate for
communities affected by unfair practices that rely on
algorithmic decision-making

● Formulating problems carefully based on knowledge of the
history of the problem and understanding what people
affected by the problem may see as a solution

What problems should
we solve with recursive
backtracking?

Congratulations on making it this far!

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

real-world
algorithms

Core
Tools

User/client
Implementation

Diagnostic

vectors + grids

 stacks + queues

 sets + maps

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap
Object-Oriented

Programming

Classes and Object-Oriented Programming

