
Big-O Notation and
Algorithmic Analysis

What do you think makes some algorithms
"faster" or "better" than others?

(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

testing
recursive

problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

algorithmic
analysis

Core
Tools

● There are many ways to solve the same problem.
How do we quantitatively talk about how they compare?

● What might be the unintentional impacts of a solution?

● Who will benefit? Will anyone be harmed?

● How will we be able to test our solution and measure its
efficacy against our goals?

● Who should be invited into the design process?

Today’s
question

How can we formalize the
notion of efficiency for
algorithms?

Today’s
topics

1. Nested Data Structure

2. Big-O Notation

3. Algorithmic Analysis

 Pseudocode

Nested Data Structures

Nested Data Structures

● We've already seen one example of nested data structures when we used the
Queue<Stack<string>> to keep track of our search for word ladders.

Nested Data Structures

● We've already seen one example of nested data structures when we used the
Queue<Stack<string>> to keep track of our search for word ladders.

● Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

Nested Data Structures

● We've already seen one example of nested data structures when we used the
Queue<Stack<string>> to keep track of our search for word ladders.

● Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

● You will thoroughly explore nested data structures (specifically nested Sets and
Maps) in Assignment 2!

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

Quick lookup by animal name

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

Store multiple, ordered feeding
times per animal

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

Wonderful diagram and animal naming borrowed from Sonja Johnson-Yu

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

How do we use modify the internal
values of this map?

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

Goal: We want to add a second feeding
time of 4:00 for "lumpy".

feedingTimes

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

Goal: We want to add a second feeding
time of 4:00 for "lumpy".

POLL: Which of the following 3 snippets
of code will correctly update the state of
the map?

1. feedingTimes["lumpy"].add
("4:00");

2. Vector<string> times =
feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times =
feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] =
times;

feedingTimes

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

Goal: We want to add a second feeding
time of 4:00 for "lumpy".

Which of the following three snippets of
code will correctly update the state of the
map?

1. feedingTimes["lumpy"].add
("4:00");

2. Vector<string> times =
feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times =
feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] =
times;

feedingTimes

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

○ feedingTimes["lumpy"].add("4:00");

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

○ feedingTimes["lumpy"].add("4:00");
● However, when you use the = operator to assign the result of the [] operator to

a variable, you get a copy of the internal data structure.
○ Vector<string> times = feedingTimes["lumpy"]; // this makes a copy

times.add("4:00"); // modifies the copy, not the actual map value!!!

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

○ feedingTimes["lumpy"].add("4:00");
● However, when you use the = operator to assign the result of the [] operator to

a variable, you get a copy of the internal data structure.
○ Vector<string> times = feedingTimes["lumpy"]; // this makes a copy

times.add("4:00"); // modifies the copy, not the actual map value!!!
● If you choose to store the internal data structure in a variable, you must do an

explicit reassignment to get your changes to persist
○ Vector<string> times = feedingTimes["lumpy"]; // this makes a copy

times.add("4:00"); // modifies the copy
feedingTimes["lumpy"] = times; // stores the modified copy in the map

Nested ADTs Summary
● Powerful

○ Can express highly structured and complex data
○ Used in many real-world systems

● Tricky
○ With increased complexity comes increased cognitive load in

differentiating between the levels of information stored at each level of
the nesting

○ Specifically in C++, working with nested data structures can be tricky due
to the fact that references and copies show up at different points in time.
Follow the correct paradigms presented earlier to stay on track!

Const Reference

● Passing a large object (e.g. a million-element Vector) by value makes a copy,
which can take a lot of time.

● Taking parameters by reference avoids making a copy, but risks that the object
gets tampered with in the process.

● As a result, it’s common to have functions that take objects as parameters take
their argument by const reference:

○ The “by reference” part avoids a copy.
○ The “const” (constant) part means that the function can’t change that argument.

● For example:
void proofreadLongEssay(const string& essay) {

/* can read, but not change, the essay. */
}

Example from slides made by Keith Schwarz

How can we formalize the
notion of efficiency for

algorithms?

Why do we care about efficiency?

● Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

Why do we care about efficiency?

● Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

● Implementing efficient algorithms allows us to solve important problems, often
with limited resources available

Source: https://datacenterfrontier.com/year-hyperscale-facebook-growth-innovation/

Why do we care about efficiency?

● Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

● Implementing efficient algorithms allows us to solve important problems, often
with limited resources available

● If we can quantify the efficiency of an algorithm, we can understand and
predict its behavior when we apply it to unseen problems

● Efficient algorithms are “green” algorithms – they are better for our climate.

Assignment 1 Redux

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

Assignment 1 Redux

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

○ Exhaustive Search
■ Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

Assignment 1 Redux

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

○ Exhaustive Search
■ Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

○ Smarter Search
■ Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1

hour

Assignment 1 Redux

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

○ Exhaustive Search
■ Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

○ Smarter Search
■ Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1

hour
○ Euclid's Algorithm

■ Actual runtime to predict 5th perfect number: Less than a second!

Assignment 1 Redux

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

○ Exhaustive Search
■ Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

○ Smarter Search
■ Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1

hour
○ Euclid's Algorithm

■ Actual runtime to predict 5th perfect number: Less than a second!

● Core idea: Although each individual experienced dramatically different real
runtimes for these three algorithms, there is a clear distinction here between
"fast"/"efficient" and "slow"/"inefficient" algorithms

Estimating Quantities

Leveraging Intuition for Estimation

Here are 5 scenarios where you have 2 similar items of different
magnitudes, one small and one larger. You know the exact magnitude of
the smaller item. Can you predict what the magnitude of the larger item
will be based on the intuitive visual relationship?

Example 1

These two cubes
are made of the
same material.

What’s your best
guess for the
mass of the
second cube?

Example 2

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Example 3

These two statues
are made of the
same material.

What’s your best
guess for the
mass of the
second statue?

Example 4

How much paint is
needed to paint
the surface of the
larger
icosahedron?

Key Takeaway

Knowing the rate at which
some quantity scales allows
you to predict its value in the
future, even if you don’t have
an exact formula.

Announcements

Announcements

● Assignment 2 is out! It’s due end of the day on Wednesday, July 7.

○ YEAH will be today, 7/1, at 7pm PT. Link is on the course website on the
zoom info page.

Big-O Notation

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

The "O" stands for "on
the order of", which is a
growth prediction, not
an exact formula

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

Big-O Notation

Doubling r increases area 4x
Tripling r increases area 9x

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

Big-O Notation

Doubling r increases area 4x
Tripling r increases area 9x

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Doubling r increases area 4x
Tripling r increases area 9x

Doubling r increases area 4x
Tripling r increases area 9x

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Doubling r increases area 4x
Tripling r increases area 9x

Doubling r increases area 4x
Tripling r increases area 9x

This just says that these
quantities grow at the same
relative rates. It does not
say that they’re equal!

Big-O in the Real
World

Big-O Example: Cell Size

● Question: Why are cells tiny?

Big-O Example: Cell Size

● Question: Why are cells tiny?
● Assumption: Cells are spheres

Big-O Example: Cell Size

● Question: Why are cells tiny?
● Assumption: Cells are spheres
● A cell absorbs nutrients from its environment through its surface area.

○ Surface area of the cell: O(r2)

Big-O Example: Cell Size

● Question: Why are cells tiny?
● Assumption: Cells are spheres
● A cell absorbs nutrients from its environment through its surface area.

○ Surface area of the cell: O(r2)

● A cell needs to provide nutrients all throughout its volume
○ Volume of the cell: O(r3)

Big-O Example: Cell Size

● Question: Why are cells tiny?
● Assumption: Cells are spheres
● A cell absorbs nutrients from its environment through its

surface area.
○ Surface area of the cell: O(r2)

● A cell needs to provide nutrients all throughout its
volume

○ Volume of the cell: O(r3)

● As a cell gets bigger, its resource intake grows slower
than its resource consumption, so each part of the cell
gets less energy.

r3

r2

Big-O Example: Manufacturing

Big-O Example: Manufacturing

● It costs you some amount of money to produce a cat toy, and there were some
one-time expenses to set up the factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Big-O Example: Manufacturing

● You’re working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there were some one-time expenses to set up
the factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n × costPerToy + startupCost

Big-O Example: Manufacturing

● You’re working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there were some one-time expenses to set up
the factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n × costPerToy + startupCost

This term grows as a
function of n

Big-O Example: Manufacturing

● You’re working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there were some one-time expenses to set up
the factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n × costPerToy + startupCost

This term grows as a
function of n

This term does not
grow

Big-O Example: Manufacturing

● You’re working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there were some one-time expenses to set up
the factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n × costPerToy + startupCost
 = O(n)

This term grows as a
function of n

This term does not
grow

Nuances of Big-O

● Big-O notation is designed to capture the rate at which a
quantity grows. It does not capture information about
○ leading coefficients: the area of a square and a circle are both O(r2).
○ lower-order terms: there may be other factors contributing to growth that

get glossed over.

● However, it’s still a very powerful tool for predicting behavior.

Analyzing Code

How can we apply Big-O to computer science?

Why runtime isn’t enough

● What is runtime?
○ Runtime is simply the amount of real time it takes for a program to

run

Why runtime isn’t enough

● What is runtime?
○ Runtime is simply the amount of real time it takes for a program to

run

Nick's 2012
MacBook

Why runtime isn’t enough

● What is runtime?
○ Runtime is simply the amount of real time it takes for a program to

run

Nick's 2012
MacBook

Ed's powerful
computers

Why runtime isn’t enough

● Measuring wall-clock runtime is less than ideal, since
○ It depends on what computer you’re using,
○ What else is running on that computer,
○ Whether that computer is conserving power,
○ Etc.

Why runtime isn’t enough

● Measuring wall-clock runtime is less than ideal, since
○ It depends on what computer you’re using,
○ What else is running on that computer,
○ Whether that computer is conserving power,
○ Etc.

● Worse, individual runtimes can’t predict future runtimes.

Why runtime isn’t enough

● Measuring wall-clock runtime is less than ideal, since
○ It depends on what computer you’re using,
○ What else is running on that computer,
○ Whether that computer is conserving power,
○ Etc.

● Worse, individual runtimes can’t predict future runtimes.

● Let's develop a computer-independent efficiency metric using big-O!

Analyzing Code:
vectorMax()

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

Assume any individual
statement takes one unit of time
to execute.

If the input Vector has n
elements, how many time
units will this code take to
run?

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N time units

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N+1 time units
N-1 time units

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N time units
N-1 time units
N-1 time units

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N time units
N-1 time units
N-1 time units
(up to) N-1 time units

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N time units
N-1 time units
N-1 time units
(up to) N-1 time units
1 time unit

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

4N + 1
Total amount of time

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

O(n)

More practical: Doubling the size of the
input roughly doubles the runtime.
Therefore, the input and runtime have a
linear (O(n)) relationship.

Total amount of time

Analyzing Code:
printStars()

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 cout << '*' << endl;

 }

 }

}

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 cout << '*' << endl;

 }

 }

}

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 cout << '*' << endl;

 }

 }

}

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 // do a fixed amount of work

 }

 }

}

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 // do a fixed amount of work

 }

 }

}

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 // do O(n) time units of work

 }

}

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 // do O(n) time units of work

 }

}

printStars()

void printStars(int n) {

 // do O(n2) time units of work

}

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 cout << '*' << endl;

 }

 }

}

O(n2)

A final analyzing code
example

hmmThatsStrange()

void hmmThatsStrange(int n) {

cout << "Mirth and Whimsy" << n << endl;

}

The runtime is completely independent of the value n.

hmmThatsStrange()

void hmmThatsStrange(int n) {

cout << "Mirth and Whimsy" << n << endl;

}

hmmThatsStrange()

void hmmThatsStrange(int n) {

cout << "Mirth and Whimsy" << n << endl;

}

O(1)

Efficiency Categorizations So Far

● Constant Time – O(1)
○ Super fast, this is the best we can hope for!
○ example: Euclid's Algorithm for Perfect Numbers

● Linear Time – O(n)
○ This is okay, we can live with this

● Quadratic Time – O(n2)
○ This can start to slow down really quickly
○ example: Exhaustive Search for Perfect Numbers

Input size

ru
nt

im
e

Applying Big-O to
ADTs

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – ???
○ .remove() – ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – ???
○ .remove() – ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

How can we achieve faster
than O(n) runtime when
searching/storing n
elements?

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

recursive
problem-solving

Core
Tools

Recursion

