Big-O Notation and
Algorithmic Analysis

What do you think makes some algorithms
"faster" or "better" than others?
(put your answers the chat)

Object-Oriented
Roadmap Programming

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Diagnostic

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
testing problem-solving

Diagnostic

There are many ways to solve the same problem.
How do we quantitatively talk about how they compare?

What might be the unintentional impacts of a solution?

Who will benefit? Will anyone be harmed?

How will we be able to test our solution and measure its
efficacy against our goals?

Who should be invited into the design process?

TOday’S How can we formalize the

notion of efficiency for

guestion algorithms?

Tod ay’S 1. Nested Data Structure
topics

2. Big-O Notation

3. Algorithmic Analysis

Pseudocode

Nested Data Structures

Nested Data Structures

e We've already seen one example of nested data structures when we used the
Queue<Stack<string>> to keep track of our search for word ladders.

Nested Data Structures

e We've already seen one example of nested data structures when we used the
Queue<Stack<string>> to keep track of our search for word ladders.

e Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

Nested Data Structures

e We've already seen one example of nested data structures when we used the
Queue<Stack<string>> to keep track of our search for word ladders.

e Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

e You will thoroughly explore nested data structures (specifically nested Sets and
Maps) in Assignment 2!

Nested Data Structures Example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

Nested Data Structures Example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

e Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

Nested Data Structures Example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

e Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

e Data Structure Declaration
0 Map<string, Vector<string>>

Nested Data Structures Example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

e Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

e Data Structure Declaration
0 Map<string, Vector<string>>

\-' Quick lookup by animal name

Nested Data Structures Example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

e Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

e Data Structure Declaration
0 Map<string, Vector<string>>

'\, Store multiple, ordered feeding

times per animal

Nested Data Structures Example

Nested Data Structures Example

map
keys values

S I"12:00","3:00", "9:00"]
"B 00, "I 00

"kandula" - — t ' ¥

"1 umpy " f {"11:00"}

Yeurna” ; I"5:00", " 3:00","3:00",

- n2:00").

Wonderful diagrom and arimal noming borrowed from CauJ{;a /gf-mf‘af-- Ya

Wonderful diagram and animal naming borrowed from Sonja Johncon-Yu

Nested Data Structures Example

map
keys values
"hansa" > {"12:00","3:00","9:00"}
"kandula" {"8:00","1:00"}
"lumpy" {"11:00"}
Hsurusﬂ {"5:0011,113:00","9:00",
np.gguy

/‘/ow do we uce moa’/@ the internal
values of thic ma,b?

Nested Data Structures Example

Goal: We want to add a second feeding
time of 4:00 for "lumpy".

feedingTimes
map
keys values
"hansa" . {"12:0011’n3:00n,"9:00"}
Hkandulaﬂ {"8:00","1:00"}
"lumpy" {"11:00"}
"SuruS" {"5:001-,113:00",..9:00,,,
"2.0011}

Nested Data Structures Example

Goal: We want to add a second feeding
time of 4:00 for "lumpy".

feedingTimes

POLL: Which of the following 3 snippets map

of code will correctly update the state of

the map? keys values

"hansa" g

1. feedingTimes["lumpy"].add 32700737667 7"9-00"}
("4:00") ; "kandula” {"8:00","1:00"}

2. Vector<string> times = " lumpy" {"11:00", }
feedingTimes["lumpy"]; "surus" {"5:00","3:00","9:00",
times.add("4:00") ; 1206}

3. Vector<string> times =

feedingTimes["lumpy"];
times.add("4:00") ;
feedingTimes["lumpy"] =
times;

Nested Data Structures Example

Goal: We want to add a second feeding
time of 4:00 for "lumpy".

feedingTimes
Which of the following three snippets of map
code will correctly update the state of the K 1
map? eys values
"hansa" "l {"12:00","3:00","9:00"}
"kandula" {"8:00","1:00"}
2. Vector<string> times = " lumpy" {v11:00", }
feedingTimes["lumpy"] ; 1] surus 1] {"5:00","3:00","9:00",
times.add ("4:00") ; 2003

[] Operator and = Operator Nuances

e When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the

reference will be persistent in the map.
0 feedingTimes["lumpy"].add("4:00") ;

[] Operator and = Operator Nuances

e When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

0 feedingTimes["lumpy"].add("4:00") ;
e However, when you use the = operator to assign the result of the [] operator to

a variable, you get a copy of the internal data structure.
0 Vector<string> times = feedingTimes["lumpy"]; // this makes a copy
times.add("4:00"); // modifies the copy, not the actual map value!!!

[] Operator and = Operator Nuances

e When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the

reference will be persistent in the map.
0 feedingTimes["lumpy"].add("4:00") ;
e However, when you use the = operator to assign the result of the [] operator to

a variable, you get a copy of the internal data structure.
0 Vector<string> times = feedingTimes["lumpy"]; // this makes a copy
times.add("4:00"); // modifies the copy, not the actual map value!!!
e If you choose to store the internal data structure in a variable, you must do an
explicit reassignment to get your changes to persist

0 Vector<string> times = feedingTimes["lumpy"]; // this makes a copy
times.add("4:00"); // modifies the copy

feedingTimes["lumpy"] = times; // stores the modified copy in the map

Nested ADTs Summary

e Powerful
o Can express highly structured and complex data
o Used in many real-world systems

e Tricky
o With increased complexity comes increased cognitive load in
differentiating between the levels of information stored at each level of
the nesting
o Specifically in C++, working with nested data structures can be tricky due
to the fact that references and copies show up at different points in time.
Follow the correct paradigms presented earlier to stay on track!

Const Reference

e Passing a large object (e.g. a million-element Vector) by value makes a copy,

which can take a lot of time.
e Taking parameters by reference avoids making a copy, but risks that the object

gets tampered with in the process.
e As aresult, it's common to have functions that take objects as parameters take

their argument by const reference:

o The “by reference” part avoids a copy.
o The “const” (constant) part means that the function can’t change that argument.

e Forexample:

void proofreadLongEssay(const string& essay) {
/* can read, but not change, the essay. */

Example from slides made by Keith Schwarz

How can we formalize the
notion of efficiency for
algorithms?

TIME COoT

STRATEGY A
STRATEGY B

ANALYZING WHETHER
STRATEGY A OR B
1S MORE. EFFICIENT

THE REASON I AM S0 INEFFICIENT

Why do we care about efficiency?

e Implementing inefficient algorithms may make solving certain tasks impossible,

even with unlimited resources

=

©

0
®
o

Directions
Playa Samara Guanacaste Province X
N
¥
Ostional X
Leave now - -
2h41min 16.6km

Ruta 150 / Nicoya - Sdmara

1h10 min 389 km

Ruta 934 / Terciopelo - Barco Quebrado; Ruta 160
/ Samara - Nosara: Ruta 160 / Nosara - Ostional

c<g Share routes

N7 |
\ pnacaste |

Cruz
\ASFistula,__ ipulas,
Haclenda 27 Abril 4 silencio, B
Pinilla, Nicoya Olgo
Tamarindo R
Rio g Sanjosé
de Iash:otmana, Ccruz [
e Nicoya
Junquillal,

Juan Diaz,

Safta Nicoja

Cruz

Pig Los Molinos,
Lag Vista al Nicoya
sA Mar, Santa e
Guy £
Lojiz cerro Mans|
Negro,
Nicoya
I Rosario, Hojaficha,
1)/ Cuafifiqul Rio Montafia, pIc Guanacaste
Nicoya
Marvilla,
Hojancha
Las
Zaragoza,
Nicoya Belén Betania,
de Nosarita Hojancha
Santa
Marta,
Hojancha

Garza)

Playa ®
Barrigona, P Playa Samara.
Samara Guanacaste Province,

Islita,

Why do we care about efficiency?

e Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

e Implementing efficient algorithms allows us to solve important problems, often
with limited resources available -

Why do we care about efficiency?

e Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

e Implementing efficient algorithms allows us to solve important problems, often
with limited resources available

e If we can quantify the efficiency of an algorithm, we can understand and
predict its behavior when we apply it to unseen problems

e Efficient algorithms are “green” algorithms — they are better for our climate.

Assignment 1 Redux

e In Assignment 1, you implemented three different algorithms for finding perfect
numbers

Assignment 1 Redux

e In Assignment 1, you implemented three different algorithms for finding perfect

numbers

o Exhaustive Search
m Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

Assignment 1 Redux

e In Assignment 1, you implemented three different algorithms for finding perfect

numbers
o Exhaustive Search
m Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days
o Smarter Search
m Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1
hour

Assignment 1 Redux

e In Assignment 1, you implemented three different algorithms for finding perfect

numbers

o Exhaustive Search
m Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days
o Smarter Search
m Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1
hour
o Euclid's Algorithm
m Actual runtime to predict 5th perfect number: Less than a second!

Assignment 1 Redux

e In Assignment 1, you implemented three different algorithms for finding perfect

numbers

o Exhaustive Search
m Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

o Smarter Search
m Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1

hour

o Euclid's Algorithm

m Actual runtime to predict 5th perfect number: Less than a second!

e Core idea: Although each individual experienced dramatically different real
runtimes for these three algorithms, there is a clear distinction here between
"fast"/"efficient" and "slow"/"inefficient" algorithms

Estimating Quantities

Leveraging Intuition for Estimation

Here are 5 scenarios where you have 2 similar items of different
magnitudes, one small and one larger. You know the exact magnitude of
the smaller item. Can you predict what the magnitude of the larger item
will be based on the intuitive visual relationship?

Example 1

A0

\/

Mass: 100kg

[
ey

-

-

A\

P

These two cubes
are made of the
same material.

What’s your best
guess for the
mass of the
second cube?

Example 2

A 0%

Mass: 60kg

10111

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Example 3

10m

Mass: 1,000kg

30m

These two statues
are made of the
same material.

What'’s your best
guess for the
mass of the
second statue?

Example 4

How much paint is
needed to paint
the surface of the
larger
icosahedron?

All sides of each triangle
are 10m long.

Paint required: All sides of each triangle
90L are 40m long.

Key Takeaway

Announcements

Announcements

e Assignment 2 is out! It’'s due end of the day on Wednesday, July 7.

o YEAH will be today, 7/1, at 7pm PT. Link is on the course website on the

zoom info page.

Big-O Notation

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

K_’ The "0 ctands for "on
the order of, which is

, hot

an exact formula

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

A 4A
—
r —

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

A 4A QA

|

r | ———|
27

3r
Doubling r increasec area 4x

[vipling r increaces area 9x

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:

o A square of side length r has area O (r?).

o A circle of radius r has area O (r?).

A 4A QA

r | ———|
27

3r
Doubling r increasec area 4x

[vipling r increaces area 9x

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:

o A square of side length r has area O (r?).

o A circle of radius r has area O (r?).

Al 144 | | 9A

ﬂIG

V=

: 2 2
r , . r
3r ' 3r '
Doué//‘ug r increases area Yx Doué//‘hg r increases area Yx

vipling v increaces area 9x [ripling r increaces area 9x

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.

e Example: This just cays that these
o A square of side length r has area O (x?) < quantities qrow af the came

o A circle of radius r has area O (r?). < relative ratec. It does not
cay that theyre equa/./

V=

A 4A QA

|

116

: 2 2
r . . r
3r 3r
Doué//‘ug r increases area Yx Doué//‘hg r increases area Yx

TF"P/’."@ ¥ increaces area 9x Tk/p/fhg ¥ increaces area 9x

Big-O in the Real
World

Big-O Example: Cell Size

e Question: Why are cells tiny?

Big-O Example: Cell Size

e Question: Why are cells tiny?
e Assumption: Cells are spheres

Big-O Example: Cell Size

e Question: Why are cells tiny?
e Assumption: Cells are spheres

e A cell absorbs nutrients from its environment through its surface area.
o Surface area of the cell: O (r?)

Big-O Example: Cell Size

e Question: Why are cells tiny?
e Assumption: Cells are spheres
e A cell absorbs nutrients from its environment through its surface area.

o Surface area of the cell: O (r?)

e A cell needs to provide nutrients all throughout its volume
o Volume of the cell: 0 (r?®)

Big-O Example: Cell Size vt
L/
e Question: Why are cells tiny? Pl / /
e Assumption: Cells are spheres
e A cell absorbs nutrients from its environment through its / &
surface area. P
o Surface area of the cell: 0 (r?) // di
e A cell needs to provide nutrients all throughout its
volume

o Volume of the cell: 0 (r?®)
e As a cell gets bigger, its resource intake grows slower

than its resource consumption, so each part of the cell

gets less energy. %

Big-O Example: Manufacturing

Big-O Example: Manufacturing

e |t costs you some amount of money to produce a cat toy, and there were some

one-time expenses to set up the factory.
e What data would you need to gather to estimate the cost of producing ten

million cat toys?

Big-O Example: Manufacturing

e You're working at a company producing cat toys. It costs you some amount of

money to produce a cat toy, and there were some one-time expenses to set up
the factory.

e \What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n x costPerToy +

Big-O Example: Manufacturing

e You're working at a company producing cat toys. It costs you some amount of

money to produce a cat toy, and there were some one-time expenses to set up
the factory.

e \What data would you need to gather to estimate the cost of producing ten
million cat toys?

This ferm qrows ac a
function of n

Cost(n) = n x costPerToy +

Big-O Example: Manufacturing

e You're working at a company producing cat toys. It costs you some amount of

money to produce a cat toy, and there were some one-time expenses to set up
the factory.

e \What data would you need to gather to estimate the cost of producing ten
million cat toys?

This ferm qrows agc a

function of n X/ \/

Cost(n) = n x costPerToy +

Big-O Example: Manufacturing

e You're working at a company producing cat toys. It costs you some amount of

money to produce a cat toy, and there were some one-time expenses to set up
the factory.

e \What data would you need to gather to estimate the cost of producing ten
million cat toys?

This ferm qrows agc a

function of n X/ \/

Cost(n) = n x costPerToy +
O(n)

Nuances of Big-O

e Big-O notation is designed to capture

It does not capture information about
o leading coefficients: the area of a square and a circle are both O(r?).
o lower-order terms: there may be other factors contributing to growth that
get glossed over.

e However, it's still a

Analyzing Code

How can we apply Big-0 to computer ccience?

Why runtime isn’t enough

e What is runtime?
o Runtime is simply the amount of real time it takes for a program to

run

Why runtime isn’t enough

e What is runtime?
o Runtime is simply the amount of real time it takes for a program to

run

[SimpleTest] =--- Tests from main.cpp

[SimpleTest] starting (PROVIDED TEST, line 36) timing vectorMax on 10,00... = Correct
Line 42 Time vectorMax(v) (size =10000000) completed in 0.268 secs Nick's 2012
Line 43 Time vectorMax(v) (size =10000000) completed in 0.264 secs
Line 44 Time vectorMax(v) (size =10000000) completed in 0.269 secs MacBook

You passed 1 of 1 tests. Keep it up!

Why runtime isn’t enough

e What is runtime?
o Runtime is simply the amount of real time it takes for a program to

run

[SimpleTest] =--- Tests from main.cpp
[SimpleTest] starting (PROVIDED TEST, line 36) timing vectorMax on 10,00... = Correct
Line 42 Time vectorMax(v) (size =10000000) completed in 0.268 secs Nick's 2012

Line 43 Time vectorMax(v) (size =10000000) completed in 0.264 secs
Line 44 Time vectorMax(v) (size =10000000) completed in 0.269 secs MacBook
You passed 1 of 1 tests. Keep it up!

[SimpleTest] ---- Tests from main.cpp ————-

[SimpleTest] starting (PROVIDED_TEST, line 36) timing vectorMax on 20,00... = Correct
Line 42 Time vectorMax(v) (size =10000000) completed 1in ©.181 secs ECPS|OOVVGrfU|
Line 43 Time vectorMax(v) (size =10000000) completed 1in 0.181 secs computers
Line 44 Time vectorMax(v) (size =10000000) completed 1in ©.183 secs

You passed 1 of 1 tests. Que bien!

Why runtime isn’t enough

e Measuring wall-clock runtime is less than ideal, since
o It depends on what computer you're using,
o What else is running on that computer,
o Whether that computer is conserving power,
o FEtc.

Why runtime isn’t enough

e Measuring wall-clock runtime is less than ideal, since
o It depends on what computer you're using,
o What else is running on that computer,
o Whether that computer is conserving power,
o FEtc.

e Worse,

Why runtime isn’t enough

e Measuring wall-clock runtime is less than ideal, since
o It depends on what computer you're using,
o What else is running on that computer,
o Whether that computer is conserving power,
o FEtc.

e Worse, individual runtimes can’t predict future runtimes.

e |et's develop a computer-independent efficiency metric using big-O!

Analyzing Code:
vectorMax()

vectorMax()

int vectorMax(Vector<int> &v) {
int currentMax = v[©0];
int n = v.size();
for (int 1 = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

int vectorMax(Vector<int> &v) { Assunmaany|ndnndua|' |
int currentMax = v[0]; statement takes one unit of time
to execute.

int n = v.size();
for (int 1 = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

IF the input Vector hascn

} elements, how many fime
} unitse will thic code Take to
return currentMax;
} run?

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[@];
int n = v.size();
for (int 1 = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size();
for (int 1 = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1tvne'Jnﬁ
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit

for (int i = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; & <€ n; i++) { N time units

if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[@]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; i < n; i+#) { N+1 time units
if (currentMax < v[i]) { N-1 time units
currentMax = v[i];
}
}
return currentMax;
}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; i < n; i++) { N time units
if (currentMax < v[i]) { N-1 time units
currentMax = v[i]; N-1time units
}
}
return currentMax;
}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; i < n; i++) { N time units
if (currentMax < v[i]) { N-1 time units
currentMax = v[i]; N-1 time units
} (up to) N-1time units
}
return currentMax;
}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; i < n; i++) { N time units
if (currentMax < v[i]) { N-1 time units
currentMax = v[i]; N-1time units
} (up to) N-1time units
} 1time unit
return currentMax;
}

vectorMax()

int vectorMax(Vector<int> &v) {
int currentMax = v[©0];
int n = v.size();

for (int i = 1; 1 < n; i++) { Total amount of time
if (currentMax < v[i]) { AN + 1
currentMax = v[i];
}
}
return currentMax;
}

vectorMax()

int vectorMax(Vector<int> &v) {
int currentMax = v[©0];
int n = v.size();

for (int i = 1; i < n; i++) { Total amount of time
if (currentMax < v[i]) { ()(ru
currentMax = v[i];
} More practical: Doubling the cize of the
} input roughly doubles the runtime.
}r'etur'n currentMax; [herefore, the input and runtime have a

linear (0(v)) relationsh ip-
D

Analyzing Code:
printStars()

printStars()

void printStars(int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << "*' << endl;

}

¥ K K K K
K KK K
+* K K K K
K KKK
K KK K

=5

Ifn

printStars()

void printStars(int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << "*' << endl;

}

printStars()

void printStars(int n) {
for (int 1 = 0; i < n; i++) {
for (int j = 0; j < n; Jj++) {

}

printStars()

void printStars(int n) {
for (int 1 = 0; i < n; i++) {
for (int j = 0; j < n; Jj++) {

}

printStars()

void printStars(int n) {
for (int 1 = 0; i < n; i++) {

printStars()

void printStars(int n) {
for (int 1 = 0; i < n; i++) {

printStars()

void printStars(int n) {

printStars()

void printStars(int n) {

printStars()

void printStars(int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << "*' << endl;

}

0(n?%)

A final analyzing code
example

hmmThatsStrange()

void hmmThatsStrange(int n) {
cout << "Mirth and Whimsy" << n << endl;

The runtime ic of the value N.

hmmThatsStrange()

void hmmThatsStrange(int n) {
cout << "Mirth and Whimsy" << n << endl;

hmmThatsStrange()

void hmmThatsStrange(int n) {
cout << "Mirth and Whimsy" << n << endl;

0(1)

Efficiency Categorizations So Far

e Constant Time — O(1)

o Super fast, this is the best we can hope for!
o example: Euclid's Algorithm for Perfect Numbers

e Linear Time — O(n)
o This is okay, we can live with this

runtime

e Quadratic Time — O(n?)

o This can start to slow down really quickly
o example: Exhaustive Search for Perfect Numbers

Input size

Applying Big-O to
ADTs

ADT Big-O Matrix

e \ectors

o .size() - O(1)

0 .add() - 0O(1)

o v[i] - 0O(1)

0 .insert() - O(n)

O .remove () — O(n)

0 .clear() - O(n)

o traversal - O(n)

e Grids

© .numRows () /.numCols ()
- 0(1)

ocgl[i][3] - O(1)
O .inBounds () - O(1)
o traversal - O(n?)

ADT Big-O Matrix

e \ectors e Queues
o .size() - O(1) O .size() - 0O(1)
0 .add() - 0O(1) o .peek() - O(1)
o wv[i] - O(1) O .enqueue() - 0O(1)
0 .insert() - O(n) 0 .dequeue() - 0O0(1)
o .remove() - O(n) O .isEmpty () - O(1)
0 .clear() - O(n) 0 traversal - O(n)
o traversal - O(n) e Stacks
e Grids .size() - O(1)
©0 .numRows () /.numCols () .peek () - O(1)

- 0(1) .push() - 0(1)

ocgl[i][3] - O(1) .pop() — O(1)
0 .inBounds () - O(1) .isEmpty () - O(1)

o traversal - O(n?) traversal - O(n)

o O O O O O

ADT Big-O Matrix

e \ectors e Queues e Sets

o .size() - O(1) O .size() - 0O(1) o .size() - 0O(1)

0 .add() - 0O(1) o .peek() - O(1) O .isEmpty () - O(1)

o wv[i] - O(1) O .enqueue() - 0O(1) o .add() - ?2?

o .insert() - O(n) 0 .dequeue() - 0O0(1) O .remove () - 2?2?27

o .remove () - O(n) O .isEmpty () — O(1) o .contains () - 2?7

0 .clear() - O(n) 0 traversal - O(n) 0 traversal - O(n)

O traversal - O(n) ® Stacks Y Maps

e Grids o .size() - 0O(1) o .size() - 0O(1)

o .numRows () /.numCols () o .peek () - O(1) O .isEmpty() - O(1)
- 0(1) o .push() - O(1) o m[key] - ??°?

ogl[i]l[j]1 - O(1) o .pop() - O(1) o .contains () - 2?7

0 .inBounds () - 0O(1) O .isEmpty () - O(1) o traversal - O(n)

o traversal - O(n?) O traversal - O(n)

ADT Big-O Matrix

e \ectors e Queues e Sets

o .size() - O(1) e —— e a—aize () — O(1)

o .add() - O(1) Empty () - O(1)

o wv[i] - O(1) d() - 222

o .insert() - O(n) move () — 2?27?27

O .remove () - O(n) ntains () - ?°?°?

0 .clear() - O(n) versal - O(n)

o traversal - O(n) laps

e Grids ze() - O(1)

O .numRows () /.numC Empty () - O(1)
- 0(1) key] - ?°?7?

ogl[i]l[j]1 - O(1) o .pop() - O(1) o .contains () - 2?7

0 .inBounds () - 0O(1) O .isEmpty () - O(1) o traversal - O(n)

o traversal - O(n?) O traversal - O(n)

What’s next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

Diagnostic

agoﬂm

testing analysis

Rl{((ll I(\ ;’\\
RECU R\I()N
REC URSI()N

REC URSI()N
RECURSION

RECURSION

e we go aga

RECURSION

Here we go again

RECURSION

Here we go again

