
Binary Search Trees

vectors + grids

stacks + queues

sets + maps

Object -Oriented
Programming

arrays

dynamic memory
management

linked data structures

algorithmic
analysistesting

recursive
problem -solving

Roadmap

Life after CS106B
Core
Tools

User/client
Implementation

Roadmap graphic courtesy of Nick Bowma Jue

vectors + grids

stacks + queues

sets + maps

Object -Oriented
Programming

algorithmic
analysistesting

recursive
problem -solving

Roadmap

Life after CS106B
Core
Tools

User/client
arrays

dynamic memory
management

linked data structures

Implementation

Today’s
questions

How can we take
advantage of tree s to
structure and e fficiently
manipulate data?

Today’s
topics

1. What is a binary search
tree (BST)?

2. Building e fficient BSTs

1. Implementing Se ts with
BSTs

Review
[trees]

tree
A tree is hierarchical data organization

structure composed of a root value
linked to zero or more non-empty

subtrees.

Definition

What is a tree?

A tree is either...
An empty data
structure , or...

A single node
(parent), with ze ro or
more non-empty
subtrees (children)

x

Tree terminology
● Types of nodes

○ The root node de fines the "top" of the tree .
○ Every node has 0 or more children nodes descended from it.
○ Nodes with no children are called leaf nodes .
○ Every node in a tree has exactly one parent node (except for the root node).

● Terminology for quantifying trees
○ A path between two nodes trave rses edges be tween parents and the ir children,

and length of a path is the number of edges be tween the two nodes.
○ The depth of a node is the length of the path (# of edges) be tween the root and

that node .
○ The height of a tree is the number of nodes in the longest path through the tree

(i.e . the number of levels in the tree).

Binary trees

● A binary tree is a tree where every node has e ithe r 0 , 1, or 2 children. No node
in a binary tree can have more than 2 children.

● Typically, the two children of a node in a binary tree are re fe rred to as the left
child and the right child .

A

B C

D

Binary trees

● A binary tree is a tree where every node has e ithe r 0 , 1, or 2 children. No node
in a binary tree can have more than 2 children.

● Typically, the two children of a node in a binary tree are re fe rred to as the left
child and the right child .

A

B C

D

struct TreeNode {
string data;
TreeNode* left;
TreeNode* right;

}

What is a tree in C++?

A tree is either...
An empty tree
represented by
nullptr, or...

A single TreeNode,
with 0 , 1, or 2 non-
null pointe rs to
othe r TreeNodes

PTR

"data"

Building a tree

● Building a tree is ve ry similar to the process of building a linked list.

● We create new nodes of the tree by dynamically allocating memory.

● We start by first creating the leaf nodes and then creating the ir parents.

● We integrate the parents into the tree by rewiring the ir left and right
pointe rs to the already-created children.

Traversing a tree - recursive ly!

Pre-order

1. "Do something" with
the current node

2. Trave rse the le ft
subtree

3. Trave rse the right
subtree

In-order

1. Trave rse the le ft
subtree

2. "Do something" with
the current node

3. Trave rse the right
subtree

1. Trave rse the le ft
subtree

2. Trave rse the right
subtree

3. "Do something" with
the current node

Post-order

1

2 3

2

1 3

3

1 2

Freeing a tree!

1. What kind of trave rsal would you use?

2. Where does the de le te call go?

Let’s code it!

freeTree()

Key Idea: The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

Key Idea: The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

How can we take advantage of trees to structure and
manipulate data?

Revisiting our levels of
abstraction...

Le
ve

ls
 o

f a
bs

tra
ct

io
n What is the inte rface for the use r?

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented e lectronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Le
ve

ls
 o

f a
bs

tra
ct

io
n What is the inte rface for the use r?

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented e lectronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

ADT Big-O Matrix
● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix
● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

Le
ve

ls
 o

f a
bs

tra
ct

io
n

What is the inte rface for the use r?
(Sets, Maps, e tc.)

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented e lectronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

What is a binary search tree
(BST)?

Building Trees Programmatically

struct TreeNode {
string data;
TreeNode* left;
TreeNode* right;

}

"pineapple"

"coconut"

"banana"

PTR PTR

"durian"

PTR PTR

"strawberry"

PTR

"taro"

PTR PTR

A binary search tree is either...

an empty data
structure represented
by nullptr or...

x

<x >x

a single node ,
whose le ft subtree is
a BST of smalle r
values than x…

and whose right
subtree is a BST of
large r values than x.

Building Trees Programmatically
struct TreeNode {

string data;
TreeNode* left;
TreeNode* right;

}
"pineapple"

"coconut"

"banana"

PTR PTR

"durian"

PTR PTR

"strawberry"

PTR

"taro"

PTR PTR

Building a BST

166 143

41

108 154

161

52

106110
109

51
107 103

166 143

41

108
154

161

52

106110
109

51
107 103

Pick the median e lement

166
143

41

154

161

52

106110
109

51
107 103

108

166
143

41

154

161

52

106110
109

51
107 103

108

Move e lements le ss
than 108 to this side

Move e lements greate r
than 108 to this side

166
143

41

154
16152

106
110

109

51

107

103

108

Move e lements le ss
than 108 to this side

Move e lements greate r
than 108 to this side

166
143

41

154
16152

106
110

109

51

107

103

108

166
143

41

154
16152

106
110

109

51

107

103

108

Pick the median e lement
of the le ft side

166
143

41

154
16152

106
110

109

51

107

108

103

<103 >103

166
143

41

154
161

52 106

110

109

51 107

108

103

<103 >103

166
143

41

154
161

52
106

110

109

51

107

108

103

166
143

41

154
161

52
106

110

109

51

107

108

103

Pick the median e lement
of the right side

166

143

41

161

52
106

110

109

51

107

108

103

<154 >154

154

166143

41
161

52
106

110

10951

107

108

103

<154 >154

154

143

41

52
106

110

10951

107

108

103 154

166

161

143

41

52
106

110

10951

107

108

103 154

166

161

Pick the median e lement
of the le ft side

143

41 52

106

110

109
107

108

103 154

166

161

51

143

41 52

106

110

109
107

108

103 154

166

161

51

143

41 52

106

110

109
107

108

103 154

166

161

51

Keep repeating this process
for all the subtrees!

14341 52 106

110

109

107

108

103 154

166

161

51

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

There are 13 nodes in the tree , but
the path to each node is short

(~O(log 13))!

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

How could we check if 106 is in this
tree?

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

How could we check if 106 is in this
tree?

106 < 108

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

How could we check if 106 is in this
tree?

106 < 108
106 > 103

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

How could we check if 106 is in this
tree?

106 < 108
106 > 103
106 < 107

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

We found 106 so we’re done!

106 < 108
106 > 103
106 < 107

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

How could we check if 170 is in this
tree?

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

How could we check if 170 is in this
tree?

170 > 108

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

How could we check if 170 is in this
tree?

170 > 108
170 > 154

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

How could we check if 170 is in this
tree?

170 > 108
170 > 154
170 > 166

14
341 5

2
10
6

11
0

10
9

10
7

10
8

10
3

15
4

16
6

16
1

51

Right child is nullptr so we’re
done!

170 > 108
170 > 154
170 > 166

Building a BST

● An optimal BST is built by repeatedly choosing the median e lement as the root
node of a given subtree and then separating e lements into groups le ss than
and greate r than that median.

Building a BST

● An optimal BST is built by repeatedly choosing the median e lement as the root
node of a given subtree and then separating e lements into groups le ss than
and greate r than that median.

What does “optimal” mean?

What if we didn’t choose the median?

16
6 14

3

41

10
8 15

4

16
1

5
2

10
6

11
010

9

51
10
7

10
3

Let’s choose the smallest element instead...

16
6 14

3

41

10
8 15

4

16
1

5
2

10
6

11
010

9

51
10
7

10
3

Let’s choose the smallest element instead...

16
6 14

3
10
8 15

4

16
1

5
2

10
6

11
010

9

51
10
7

10
3

41

Let’s choose the smallest element instead...

16
6 14

3
10
8 15

4

16
1

5
2

10
6

11
010

9

51
10
7

10
3

41

Let’s choose the smallest element instead...

16
6 14

3
10
8 15

4

16
1

5
2

10
6

11
010

9

51

10
7

10
3

41

14

10
8

5
2

10
6

11
0

10
9

51

10
7

10
3

41

14

10
8

5
2

10
6

11
0

10
9

51

10
7

10
3

41

Now our longest path is O(n)!

Takeaways

● There are multiple valid BSTs for the same se t of data.

14

10
8

5
2

10
6

11
0

10
9

51

10
7

10
3

41

Takeaways

● There are multiple valid BSTs for the same se t of data.
○ Anothe r example with the previous datase t:

1
6
6

1
4
3

1
0
8

1
5
4 1

6
1

5
2

1
0
6

1
1
0

1
0
9

5
1

1
0
7

1
0
3

4
1

Takeaways

● There are multiple valid BSTs for the same se t of data.

● How you construct the tree /the order in which you add the e lements to the tree
matte rs!

Takeaways

● There are multiple valid BSTs for the same se t of data.

● How you construct the tree /the order in which you add the e lements to the tree
matte rs!

● A binary search tree is balanced if its he ight is O(log n), where n is the number
of nodes in the tree (i.e . le ft/right subtrees don’t diffe r in he ight by more than 1).

○ Lookup, inse rtion, and de le tion with balanced BSTs all ope rate in O(log n) runtime .

Takeaways

● There are multiple valid BSTs for the same se t of data.

● How you construct the tree /the order in which you add the e lements to the tree
matte rs!

● A binary search tree is balanced if its he ight is O(log n), where n is the number
of nodes in the tree (i.e . le ft/right subtrees don’t diffe r in he ight by more than 1).

○ Lookup, inse rtion, and de le tion with balanced BSTs all ope rate in O(log n) runtime .
○ Theorem: If you start with an empty tree and add in random values, then with high

probability the tree is balanced. → take an algorithmic analysis class to learn why!

Takeaways

● There are multiple valid BSTs for the same se t of data.

● How you construct the tree /the order in which you add the e lements to the tree
matte rs!

● A binary search tree is balanced if its he ight is O(log n), where n is the number
of nodes in the tree (i.e . le ft/right subtrees don’t diffe r in he ight by more than 1).

○ Lookup, inse rtion, and de le tion with balanced BSTs all ope rate in O(log n) runtime .
○ Theorem: If you start with an empty tree and add in random values, then with high

probability the tree is balanced. → take CS161 to learn why!
○ A self-balancing BST reshapes itse lf on inse rtions and de le tions to stay balanced

(how to do this is beyond the scope of this class).

Announcements

Announcements

● Assignment 5 is due tonight at 11:59pm PDT.

● Assignment 6 will be re leased by the end of the day tomorrow and will be due
on Wednesday, August 11 at 11:59pm PDT. This is a hard deadline – the re is
no grace period and no submissions will be accepted after this time .

● The End-quarte r Assessment will take place over 3 days from Friday, August
13 to Sunday, August 15.

Implementing Sets with BSTs

We’re going to implement a Set using a BST!

● Our Se t will only store strings as its data type .

We’re going to implement a Set using a BST!

● Our Se t will only store strings as its data type .

struct TreeNode {
std::string data;
TreeNode* left;
TreeNode* right;

// default constructor does not initialize
TreeNode() {}
// 3-arg constructor sets fields from arguments
TreeNode(std::string d, TreeNode* l, TreeNode* r) {

data = d;
left = l;
right = r;

}
};

We’re going to implement a Set using a BST!

● Our Se t will only store strings as its data type

● We have a header file that will include a public inte rface already de fined.

OurSet Public Interface
class OurSet {
public:

OurSet(); // constructor
~OurSet(); // destructor

bool contains(string value);
void add(string value);
void remove(string value);
void clear();
int size();
bool isEmpty();
void printSetContents();

private:
/* To be defined soon! */

};

We’re going to implement a Set using a BST!

● Our Se t will only store strings as its data type

● We have a header file that will include a public inte rface already de fined.

● As we write the Se t me thods, think about how the ir runtimes would change for
a balanced vs. an unbalanced BST.

○ Note : Actual se ts are se lf-balancing, but we won’t go into the de tails of how to
implement that!

How do we design OurSet?
We must answer the following three questions:

1. Member functions: What public interface should OurSet support?
What functions might a client want to call?

2. Member variable s: What private information will we need to store in
order to keep track of the data stored in OurSet?

3. Constructor: How are the member variables initialized when a new
instance of OurSet is created?

OurSet Public Interface
class OurSet {
public:

OurSet(); // constructor
~OurSet(); // destructor

bool contains(string value);
void add(string value);
void remove(string value);
void clear();
int size();
bool isEmpty();
void printSetContents();

private:
/* To be defined soon! */

};

Let’s code it!
constructor and destructor

Let’s code it!

size(), isEmpty(), clear()

Let’s code it!
printSetContents ()

OurSet Public Interface
class OurSet {
public:

OurSet(); // constructor
~OurSet(); // destructor

bool contains(string value);
void add(string value);
void remove(string value);
void clear();
int size();
bool isEmpty();
void printSetContents();

private:
/* To be defined soon! */

};

14341 52 106

110

109

107

108

103 154

166

161

51

We found 106 so we’re done!

106 < 108
106 > 103
106 < 107

Let’s code it!
contains()

14341 52 106

110

109

107

108

103 154

166

161

51

106 < 108
106 > 103
106 < 107

14341 52 106

110

109

107

108

103 154

166

161

51

Let’s code it!
add()

14341 52 106

110

109

107

108

103 154

166

161

51

Right child is nullptr

170 > 108
170 > 154
170 > 166

OurSet summary

● Our tree utility functions (inorderPrint, freeTree) showed up as private
member functions/he lpe rs!

○ In-orde r trave rsal prints our e lements in the correctly sorted orde r!

OurSet summary

● Our tree utility functions (inorderPrint, freeTree) showed up as private
member functions/he lpe rs!

○ In-orde r trave rsal prints our e lements in the correctly sorted orde r!

● Using a BST allowed us to take advantage of recursion to traverse our data
and ge t an O(log n) runtime for our methods.

OurSet summary

● Our tree utility functions (inorderPrint, freeTree) showed up as private
member functions/he lpe rs!

○ In-orde r trave rsal prints our e lements in the correctly sorted orde r!

● Using a BST allowed us to take advantage of recursion to traverse our data
and ge t an O(log n) runtime for our methods.

● Rewiring trees can be complicated!
○ Make sure to conside r when nodes need to be passed by re fe rence .
○ Check out the remove me thod afte r class if you’re inte re sted in see ing an example

of tree rewiring (you won’t be required to do anything this complex with tree
rewiring).

You can play around with a simulation of BSTs to see traversal, lookup, insertion,
and de le tion, and try balanced and unbalanced trees at this website :

https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

What’s next?

vectors + grids

stacks + queues

sets + maps

Object -Oriented
Programming

algorithmic
analysistesting

recursive
problem -solving

Roadmap

Life after CS106B
Core
Tools

User/client
arrays

dynamic memory
management

linked data structures

Implementation

Le
ve

ls
 o

f a
bs

tra
ct

io
n What is the inte rface for the use r?

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented e lectronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Huffman coding

	Binary Search Trees
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Roadmap
	Roadmap
	Today’s questions
	Today’s topics
	Review
[trees]
	Slide Number 11
	What is a tree?
	Tree terminology
	Binary trees
	Binary trees
	What is a tree in C++?
	Building a tree
	Traversing a tree - recursively!
	�Freeing a tree!��1. What kind of traversal would you use?��2. Where does the delete call go?�
	Let’s code it!��freeTree()
	Slide Number 21
	Slide Number 22
	Revisiting our levels of abstraction...
	Levels of abstraction
	Levels of abstraction
	ADT Big-O Matrix
	ADT Big-O Matrix
	Levels of abstraction
	What is a binary search tree (BST)?
	Building Trees Programmatically
	A binary search tree is either...
	Building Trees Programmatically
	Building a BST
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Building a BST
	Building a BST
	What if we didn’t choose the median?
	Let’s choose the smallest element instead...
	Let’s choose the smallest element instead...
	Let’s choose the smallest element instead...
	Let’s choose the smallest element instead...
	Slide Number 72
	Slide Number 73
	Takeaways
	Slide Number 75
	Takeaways
	Takeaways
	Takeaways
	Takeaways
	Takeaways
	Announcements
	Announcements
	Implementing Sets with BSTs
	We’re going to implement a Set using a BST!

	We’re going to implement a Set using a BST!

	We’re going to implement a Set using a BST!

	OurSet Public Interface
	We’re going to implement a Set using a BST!

	How do we design OurSet?
	OurSet Public Interface
	Let’s code it!��constructor and destructor
	Let’s code it!��size(), isEmpty(), clear()
	Let’s code it!��printSetContents()
	OurSet Public Interface
	Slide Number 95
	Let’s code it!��contains()
	Slide Number 97
	Slide Number 98
	Let’s code it!��add()
	Slide Number 100
	OurSet summary
	OurSet summary
	OurSet summary
	Slide Number 104
	What’s next?
	Roadmap
	Levels of abstraction
	Huffman coding

