

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

Object-Oriented
Programming

Diagnostic

Roadmap graphic courtesy of Nick Bowsts

arrays

dynamic memory
management

linked data structures

real-world
algorithms

Life after CS106

recursive

problem -solving

Object-Oriented
Roadm ap Programming

C++ basics

vectors + grids LA

dynamic memory

stacks + queues
management

sets + maps

e

real-world
algorithms

Life after CS106

recursive
testing analysis problem -solving

Diagnostic

How can we take

)
TOday S advantage oftrees to
que StiOIlS structure and e fliciently

manipulate data?

. What is a binary search

TOd ay,S tree (BST)?

t()plCS . Building efficient BSTs

. Implementng Sets with
BSTs

Review

[trees]

tree
A tree is hierarchical data organization
structure composed of a root value
linked to zero or more non-empty
subtrees.

What is a tree?

A tree is either...

An empty data
structure, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

Tree terminology

e Types ofnodes
o The node defines the "top" ofthe tree.
o Everynode has 0 or more nodes descended from it.
o Nodes with no children are called
o Everynode in a tree has exactly one node (except for the root node).

e Terminology for quantifying trees

o A between two nodes traverses edges between parents and their children,
and of a path is the number ofedges between the two nodes.

o The of a node is the length ofthe path # ofedges)between the root and
that node.

o The of a tree is the number ofnodes in the longest path through the tree
(L.e.the number of in the tree).

Binary trees

o A is a tree where every node has either 0, 1, or 2 children. No node
in a binary tree can have more than 2 children.

e Typically, the two children ofa node in a binary tree are referred to as the

and the . °

Binary trees

o A is a tree where every node has either 0, 1, or 2 children. No node
in a binary tree can have more than 2 children.

e Typically, the two children ofa node in a binary tree are referred to as the

and the :
° struct TreeNode {
string data;
° ° TreeNode* left;
TreeNode* right;
) :

What is a tree in C++7?

A tree is either...

An empty tree [Colliforrio]
represented by | NULLPTR
nullptr,or...

lldatall

padil BN

® @

A single TreeNode,
with 0, 1, or 2 non-

null pointers to
other TreeNodes

Building a tree
e Building a tree 1s very similar to the process of building a linked list.
e We create new nodes ofthe tree by dynamically allocating memory.
e We start by first creating the leafnodes and then creating their parents.

e We integrate the parents into the tree by rewiring their left and right
pointers to the already-created children.

Traversing a tree - recursive ly!

Pre-order

2. Traverse the left
subtree

3. Traverse the right
subtree

3.

In-order

Traverse the left
subtree

Traverse the right

subtree

5O 00 OO

Post-order

Traverse the left
subtree

. Traverse the right

subtree

Freeing a tree!

. What kind of traversal would you use?

2. Where does the delete call go?

Let's code it!

freeTree()

The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

How can we take advantage of trees to structure and
manipulate data”?

Revisiting our levels of
abstraction...

Abstract Data

. : Structures
What is the interface for the user?

-
S | S R —
-
O o
E How 1s our data organized? Data Organ_'zatlon
- . Strategies
_UQ') (binary heaps, BSTs, Huffman trees)
©
(T
@ What stores our data? Fundamental C++
% (arrays, linked lists,) Data Storage
> I {_
) e
-
How 1s data represented electronically? Computer
(RAM) Hardware

Abstract Data

. : Structures
What is the interface for the user?

-
S | S R —
-
O o
E How is our data organized? Data Organ_'zatlon
- : Strategies
_UQ') (binary heaps, , Huffman trees)
©
(T
@ What stores our data? Fundamental C++
% (arrays, linked lists,) Data Storage
> I _}
) e
-
How 1s data represented electronically? Computer
(RAM) Hardware

ADT Big-O Matrix

e Vectors ® Qucues e Scts
o .size() - 0O(1) o .size() - 0O(1) o0 .size() - 0O(1)
o.add() - O(1) o.peek() - 0(1) o .isEmpty () - O(1)
o wv[i] - O(1) O .enqueue() - O(1) ©0.add() - O(log(n))
O .insert() - O(n) 0 .dequeue() - O(1) O .remove() - O(log(n))
o .remove () - O(n) O .isEmpty () - O(1) o .contains() - O(log(n))
0 .clear() - O(n) O traversal - O(n) O traversal - O(n)
O traversal - O(n)
e Stacks e Maps
e (rids o .size() - O(1) o .size() - O(1)
o .numRows () /.numCols () o.peek() - 0(1) o .isEmpty () - O(1)

- 0(1) ©.push() - O(1) © m[key] - O(log(n))
og[i][j] - O(1) °o.pop() - O(1) © .contains() - O(log(n))
0 .inBounds () - O(1) O .isEmpty () - O(1) o traversal - O(n)

o traversal - 0O(n?) O traversal - O(n)

ADT Big-O Matrix

e Vectors ® Qucues e Scts
o .size() - 0O(1) o .size() - 0O(1) o0 .size() - 0O(1)
o.add() - O(1) o.peek() - 0(1) o .isEmpty () - O(1)
o wv[i] - 0O(1) O .enqueue() - O(1) 0 .add() - O(log(n))
O .insert() - O(n) 0 .dequeue() - O(1) 0 .remove () — O(log(n))
o .remove () - O(n) O .isEmpty () - O(1) o .contains () - O(log(n))
0 .clear() - O(n) O traversal - O(n) O traversal - O(n)
O traversal - O(n)
e Stacks e Maps

e (rids .size() - 0O(1) .size() - O(1)
o .numRows () /.numCols () .peek () - O(1) .isEmpty () - O(1)

- 0(1)

.pop() — O(1) .contains() - O(log(n))
0 .inBounds () - O(1) .isEmpty () - O(1) traversal - O(n)
o traversal - 0O(n?) traversal - O(n)

@]
@]
.push() - 0(1) o m[key] - O(log(n))
ogl[il[§] - O(1) o
@]

What is the interface for the user? Abstract Data

- (Sets, Maps, etc.) Structures
< S —
-
O [l .
© How is our data organized? Data Organ-lzatlon
D (binary heaps, , Huffman trees) Strategies
O
©
(T
O What stores our data? Fundamental C++
»n (arrays, linked lists,) Data Storage
O
> I {_
) e
—
: : 0
How is data represented electronically® Computer
(RAM) Hardware

What Is a binary search tree

(BST)?

Building Trees Programmatically

"pineapple”

_-® *~ struct TreeNode {

string data;
‘,/”///' ‘\\\\‘\\‘ TreeNode* left;

TreeNode* right;
"coconut" "strawberry" nes
= }
4////////‘//. .\\\\\\\‘\\\‘ -mﬁjﬂRl .\\\\‘\~\\\\\\\;
"banana” "durian” "taro"

NiLier] NOLiers NiLier] NOLiers NiLier| NLier

A binary search tree is either...

an empty data
structure represented

by nullptr or...

and whose right
subtree 1s a BST of
larger values than x.

a single node,
whose left subtree is
a BST of smaller

values than X...

Building Trees Programmatically

AN

"pineapple”

/0

.\

struct TreeNode {

string data;
TreeNode* left;
TreeNode* right;

/

"coconut"

"banana"

Nl lee| Nt

"durian"

Nl lee| Nt

~.

"strawberry"

:ﬂmﬁm | .

T~

"taro"

:folLLP:TRM ‘NULLp

Building a BST

&

O
&
z

&

Pick the median element

® @

Move elements less | Move elements greater
than 108 to this side than 108 to this side

o
®e ® g

Move elements less Move elements greater
than 108 to this side than 108 to this side

I
1
|
|
I
1
|
|
I
|

T o o e e e o e e e e e e o

LI e e e e e R

— o - e

—— o —— oy,

T o o e e e o e e e e e e o

LI e e e e e R

Pick the median element
ofthe left side

—— o —— oy,
T o o e e e o e e e e e e o

>103

<103

T o o e e e o e e e e e e o

>103

<103

—— o —— oy,
T o o e e e o e e e e e e o

e - e e - -

— o - e

ofthe right side

—— o —— oy,

Pick the median element

T o o e e e o e e e e e e o

e - e e - -

e - e e - -

e - e e - -

.

e - e e - -

®
@

- =y,

\
1
1
1
1
|
1
1
1
|
]
/
\
1
1
1
1
1
1
1
1
1
1
1
=
(e
O
g
L o
o 2
S MQM
\
_ - 9
! O
O
| E o
1 O G
- c
1 -
I .Q
1 (a8
/

e - e e - -

\——————————

e - e e - -

- =y,

—— o o o -

- — oy,

\——————————

Keep repeating this process

—— o o

—— o —

for all the subtrees!

e - e e - -

—— o

16

10 10 14
6 9

There are 13 nodes in the tree, but
the path to each node is short
(~0(log 13))

16

How could we check if 106 is in this
tree?

106 < 108

16

How could we check if 106 is in this
tree?

106 < 108
106 > 103

How could we check if 106 is in this
tree?

106 < 108
106 > 103
106 < 107

10

How could we check if 106 is in this
tree?

106 < 108
106 > 103
106 < 107

10

We found 106 so we re done!

16

How could we check if170 is in this
tree?

176 > 108

16

How could we check if170 is in this
tree?

176 > 108
176 > 154

How could we check if170 is in this
tree?

176 > 108
176 > 154
176 > 166

How could we check if170 is in this
tree?

176 > 108
176 > 154
176 > 166

Right child is nullptr so were
done!

Building a BST

e An 1s built by repeatedly choosing the median element as the root
node ofa given subtree and then separating elements into groups less than

and greater than that median.

Building a BST

e An 1s built by repeatedly choosing the median element as the root
node ofa given subtree and then separating elements into groups less than
and greater than that median.

What does “optimal” mean?

What if we didn’t choose the median?

o

e

Let’'s choose the smallest element instead...

o

e

Let’'s choose the smallest élement Instead...

o

@

Let’'s choose the smallest élement Instead...

o

@

Let’'s choose the smallest element instead...
"

.

Now our longest path is O(n)! 3

Takeaways

e There are multiple valid BSTs for the same set ofdata.

Takeaways

e There are multiple valid BSTs for the same set ofdata.
o Another example with the previous dataset:

Takeaways

e There are multiple valid BSTs for the same set of data.

e How you construct the tree/the order in which you add the elements to the tree

matters!

Takeaways
e There are multiple valid BSTs for the same set of data.

e How you construct the tree/the order in which you add the elements to the tree

matters!
e Abinarysearch tree is if its height is 0(log n), where nis the number

ofnodes in the tree (ie. left/right subtrees don’t differ n height by more than 1).
o Lookup, insertion, and deletion with balanced BSTs all operate in 0(log n) runtime.

Takeaways
e There are multiple valid BSTs for the same set of data.

e How you construct the tree/the order in which you add the elements to the tree

matters!

e Abinarysearch tree is if its height is 0(log n), where nis the number

ofnodes in the tree (ie. left/right subtrees don’t differ n height by more than 1).
o Lookup, insertion, and deletion with balanced BSTs all operate in 0(log n) runtime.
o Theorem: If you start with an empty tree and add in random values, then with high

probability the tree is balanced. —take an algorithmic analysis class to learn why!

Takeaways
e There are multiple valid BSTs for the same set of data.

e How you construct the tree/the order in which you add the elements to the tree

matters!

e Abinarysearch tree is if its height is 0(log n), where nis the number

ofnodes in the tree (ie. left/right subtrees don’t differ n height by more than 1).
o Lookup, insertion, and deletion with balanced BSTs all operate in 0(log n) runtime.
o Theorem: If you start with an empty tree and add in random values, then with high

probability the tree is balanced. —take CS161to learn why!
o A self-balancing BST reshapes itself on insertions and deletions to stay balanced
(how to do this is beyond the scope ofthis class).

Announcements

Announcements
e Assignment 5 is due tonight at 11:59pm PDT.
e Assignment 6 willbe released by the end ofthe day tomorrow and willbe due
on Wednesday, August 11 at 11:59pm PDTThis is a hard deadline — there is

no grace period and no submissions will be accepted after this time .

e The End-quarter Assessment will take place over 3 days from Friday, August
13 to Sunday, August 15.

Implementing Sets with BSTs

We’re going to implement a Set using a BST!

e Qur Set will only store strings as its data type.

We’re going to implement a Set using a BST!

e Qur Set will only store strings as its data type.

struct TreeNode {
std::string data;
TreeNode* left;
TreeNode* right;

// default constructor does not initialize
TreeNode() {}

// 3-arg constructor sets fields from arguments
TreeNode(std::string d, TreeNode* 1, TreeNode* r) {

data = d;
left = 1;
right = r;

}s

We’re going to implement a Set using a BST!

e Qur Set will only store strings as its data type

e We have a header file that will include a public interface already defined.

OurSet Public Interface

class OurSet {
public:
OurSet(); // constructor
~0urSet(); // destructor

bool contains(string value);
void add(string value);

void remove(string value);
void clear();

int size();

bool isEmpty();

void printSetContents();

private:
/* To be defined soon! */

}s

We’re going to implement a Set using a BST!

e Qur Set will only store strings as its data type
e We have a header file that will include a public interface already defined.

e As we write the Set methods, think about how their runtimes would change for

a balanced vs. an unbalanced BST.
o Note: Actual sets are self-balancing, but we won’t go into the details ofhow to

implement that!

How do we design OurSet?

We must answer the following three questions:

1. Member functions: What public interface shouldOurSet support?
What functions might a client want to call?

2. Member variables: What private information will we need fto store in
order fo keep lfrack of the data stored in OurSet ?

3. Constructor: How are the member variables initialized when a new
instance ofOurSet /s created?

OurSet Public Interface

class OurSet {
public:
OurSet(); // constructor
~0urSet(); // destructor

bool contains(string value);
void add(string value);

void remove(string value);
void clear();

int size();

bool isEmpty();

void printSetContents();

private:
/* To be defined soon! */

}s

Let's code it!

constructor and destructor

Let's code it!

size(), isEmpty(),clear()

Let's code it!

printSetContents ()

OurSet Public Interface

class OurSet {
public:
OurSet(); // constructor
~0urSet(); // destructor

bool contains(string value);
void add(string value);

void remove(string value);
void clear();

int size();

bool isEmpty();

void printSetContents();

private:
/* To be defined soon! */

}s

106 < 108
106 > 103
106 < 107

103

We found 106 so we re done!

Let's code it!

contains()

106 < 108
106 > 103
106 < 107

103

Let's code it!

add()

176 > 108
176 > 154
176 > 166

154

Right child is nullptr

OurSet summary

e Our tree utility functions (inorderPrint, freeTree)showed up as private
member functions/helpers!

o In-order traversal prints our elements in the correctly sorted order!

OurSet summary

e Our tree utility functions (inorderPrint, freeTree)showed up as private

member functions/helpers!
o In-order traversal prints our elements in the correctly sorted order!

e Using a BST allowed us to take advantage ofrecursion to traverse our data

and get an O(log n) runtime for our methods.

OurSet summary

e Our tree utility functions (inorderPrint, freeTree)showed up as private
member functions/helpers!

o In-order traversal prints our elements in the correctly sorted order!

e Using a BST allowed us to take advantage ofrecursion to traverse our data
and get an O(log n) runtime for our methods.

e Rewiring trees can be complicated!
o Make sure to consider when nodes need to be passed by reference.
o Check out the remove method after class if you’re interested in seeing an example
oftree rewiring (you won'’t be required to do anything this complex with tree
re wiring).

You can play around with a simulation of BSTs to see traversal, lookup, insertion,
and deletion, and try balanced and unbalanced trees at this website:

https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

What's next?

Object-Oriented
Roadm ap Programming

C++ basics

vectors + grids LA

dynamic memory

stacks + queues
management

sets + maps

)

Life after CS106

recursive
testing analysis problem -solving

Diagnostic

Abstract Data

. : Structures
What is the interface for the user?

-
S | P
-
O [l .
E How is our data organized? Data Organ_'zatlon
- . Strategies
n (bnary heaps, BSTs,)
@)
©
(T
O What stores our data? Fundamental C++
% (arrays, linked lists,) Data Storage
> I {_
) e
-
How is data represented electronically? Computer
(RAM) Hardware

Huffman coding

	Binary Search Trees
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Roadmap
	Roadmap
	Today’s questions
	Today’s topics
	Review
[trees]
	Slide Number 11
	What is a tree?
	Tree terminology
	Binary trees
	Binary trees
	What is a tree in C++?
	Building a tree
	Traversing a tree - recursively!
	�Freeing a tree!��1. What kind of traversal would you use?��2. Where does the delete call go?�
	Let’s code it!��freeTree()
	Slide Number 21
	Slide Number 22
	Revisiting our levels of abstraction...
	Levels of abstraction
	Levels of abstraction
	ADT Big-O Matrix
	ADT Big-O Matrix
	Levels of abstraction
	What is a binary search tree (BST)?
	Building Trees Programmatically
	A binary search tree is either...
	Building Trees Programmatically
	Building a BST
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Building a BST
	Building a BST
	What if we didn’t choose the median?
	Let’s choose the smallest element instead...
	Let’s choose the smallest element instead...
	Let’s choose the smallest element instead...
	Let’s choose the smallest element instead...
	Slide Number 72
	Slide Number 73
	Takeaways
	Slide Number 75
	Takeaways
	Takeaways
	Takeaways
	Takeaways
	Takeaways
	Announcements
	Announcements
	Implementing Sets with BSTs
	We’re going to implement a Set using a BST!

	We’re going to implement a Set using a BST!

	We’re going to implement a Set using a BST!

	OurSet Public Interface
	We’re going to implement a Set using a BST!

	How do we design OurSet?
	OurSet Public Interface
	Let’s code it!��constructor and destructor
	Let’s code it!��size(), isEmpty(), clear()
	Let’s code it!��printSetContents()
	OurSet Public Interface
	Slide Number 95
	Let’s code it!��contains()
	Slide Number 97
	Slide Number 98
	Let’s code it!��add()
	Slide Number 100
	OurSet summary
	OurSet summary
	OurSet summary
	Slide Number 104
	What’s next?
	Roadmap
	Levels of abstraction
	Huffman coding

