Recursive Fractals

What examples of recursion have you encountered in day-to-day life (not programming-related)?
(put your answers the chat)

Roadmap

C++ basics
 User/client

vectors + grids
stacks + queues
sets + maps

Today's
 question

How can we use recursion to make art?

1. Review

Today's topics

2. The Cantor Set
3. The Sierpinski Carpet
4. Revisiting the

Towers of Hanoi

Review

Definition

recursion

A problem-solving technique in which tasks are completed by reducing them into repeated, smaller tasks of the same form.

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into repeated, smaller tasks of the same form.
- A recursive operation (function) is defined in terms of itself (i.e. it calls itself).

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into repeated, smaller tasks of the same form.
- Recursion has two main parts: the base case and the recursive case.
- Base case: Simplest form of the problem that has a direct answer.
- Recursive case: The step where you break the problem into a smaller, self-similar task.

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into repeated, smaller tasks of the same form.
- Recursion has two main parts: the base case and the recursive case.
- The solution will get built up as you come back up the call stack.
- The base case will define the "base" of the solution you're building up.
- Each previous recursive call contributes a little bit to the final solution.
- The initial call to your recursive function is what will return the completely constructed answer.

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into repeated, smaller tasks of the same form.
- Recursion has two main parts: the base case and the recursive case.
- The solution will get built up as you come back up the call stack.
- When solving problems recursively, look for self-similarity and think about what information is getting stored in each stack frame.

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into repeated, smaller tasks of the same form.
- Recursion has two main parts: the base case and the recursive case.
- The solution will get built up as you come back up the call stack.
- When solving problems recursively, look for self-similarity and think about what information is getting stored in each stack frame.

Example: isPalindrome()

Check out these funny English palindrome sentences that you can read forwards and backwards:

Was it a rat I saw?
A nut for a jar of tuna.
Go dog!
Don't nod!
No lemon, no melon. Was it a car or a cat I saw?
Oozy rat in a sanitary zoo.
Never odd or even.
Step on no pets.

Mr. Owl ate my metal worm.

Susan's speedometer in 2012 and 2019

Write a function that returns if a string is a palindrome

A string is a palindrome if it reads the same both forwards and backwards:

- isPalindrome("level") \rightarrow true
- isPalindrome("racecar") \rightarrow true
- isPalindrome("step on no pets") \rightarrow true
- isPalindrome("high") \rightarrow false
- isPalindrome("hi") \rightarrow false
- isPalindrome("palindrome") \rightarrow false
- isPalindrome("X") \rightarrow true
- isPalindrome("") \rightarrow true

Approaching recursive problems

- Look for self-similarity.
- Try out an example and look for patterns.
- Work through a simple example and then increase the complexity.
- Think about what information needs to be "stored" at each step in the recursive case (like the current value of \boldsymbol{n} in each factorial stack frame).
- Ask yourself:
- What is the base case? (What is the simplest case?)
- What is the recursive case? (What pattern of self-similarity do you see?)

Discuss:

What are the base and recursive cases?

(breakout rooms)

isPalindrome()

- Look for self-similarity: racecar

isPalindrome()

- Look for self-similarity: racecar
- Look at the first and last letters of "racecar" \rightarrow both are ' r '

isPalindrome()

- Look for self-similarity: racecar
- Look at the first and last letters of "racecar" \rightarrow both are ' r '
- Check if "aceca" is a palindrome:

isPalindrome()

- Look for self-similarity: racecar
- Look at the first and last letters of "racecar" \rightarrow both are ' r '
- Check if "aceca" is a palindrome:

■ Look at the first and last letters of "aceca" \rightarrow both are 'a'

- Check if "cec" is a palindrome:

isPalindrome()

- Look for self-similarity: racecar
- Look at the first and last letters of "racecar" \rightarrow both are ' r '
- Check if "aceca" is a palindrome:

■ Look at the first and last letters of "aceca" \rightarrow both are 'a'

- Check if "cec" is a palindrome:
- Look at the first and last letters of "cec" \rightarrow both are ' c '
- Check if "e" is a palindrome:

isPalindrome()

- Look for self-similarity: racecar
- Look at the first and last letters of "racecar" \rightarrow both are ' r '
- Check if "aceca" is a palindrome:

■ Look at the first and last letters of "aceca" \rightarrow both are 'a’

- Check if "cec" is a palindrome:
- Look at the first and last letters of "cec" \rightarrow both are ' c '
- Check if "e" is a palindrome:
- Base case: "e" is a palindrome

isPalindrome()

- Look for self-similarity: racecar
- Look at the first and last letters of "racecar" \rightarrow both are ' r '
- Check if "aceca" is a palindrome:

■ Look at the first and last letters of "aceca" \rightarrow both are 'a'

- Check if "cec" is a palindrome:
- Look at the first and last letters of "cec" \rightarrow both are ' c '
- Check if "e" is a palindrome:
- Base case: "e" is a palindrome

isPalindrome()

- Look for self-similarity: high

isPalindrome()

- Look for self-similarity: high
- Look at the first and last letters of "high" \rightarrow both are ' h '

isPalindrome()

- Look for self-similarity: high
- Look at the first and last letters of "high" \rightarrow both are ' h '
- Check if "ig" is a palindrome:

isPalindrome()

- Look for self-similarity: high
- Look at the first and last letters of "high" \rightarrow both are ' h '
- Check if "ig" is a palindrome:
- Look at the first and last letters of "ig" \rightarrow not equal

■ Base case: Return false

isPalindrome()

- Base cases:
- isPalindrome("") \rightarrow true
- isPalindrome(string of length 1) \rightarrow true
- If the first and last letters are not equal \rightarrow false
- Recursive case: If the first and last letters are equal, isPalindrome(string) $=$ isPalindrome(string minus first and last letters)

isPalindrome()

- Base cases:
- isPalindrome("") \rightarrow true
- isPalindrome(string of length 1) \rightarrow true
(or recursive) cases!
- If the first and last letters are not equal \rightarrow false
- Recursive case: If the first and last letters are equal, isPalindrome(string) = isPalindrome(string minus first and last letters)

isPalindrome()

```
bool isPalindrome (string s) {
    if (s.length() < 2) {
        return true;
    } else {
        if (s[0] != s[s.length() - 1]) {
            return false;
        }
        return isPalindrome(s.substr(1, s.length() - 2));
    }
}
```


isPalindrome() in action

Printstrue!

Announcements

Announcements

- Assignment 1 grades will be released on Paperless by the end of the day today.
- Assignment 2 is due tonight at 11:59pm PDT.
- Assignment 3 will be released by the end of the day on Thursday.
- YEAH for A3 will be 7/8 at 11am PT. Info for the session will be posted on Ed.
- Make sure to check out our posts on Ed - there's important info there!

Self-Similarity

Fractals

- A fractal is any repeated, graphical pattern.
- A fractal is composed of repeated instances of the same shape or pattern, arranged in a structured way.

What differentiates the smaller tree from the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar structures are often defined in terms of some parameter called the order, which indicates the complexity of the overall structure.

An order-3 tree

An order-0 tree is nothing at all.

An order-n tree is a line with two smaller order- $(\mathrm{n}-1)$ trees starting at the end of that line.

What differentiates the smaller tree from the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar structures are often defined in terms of some parameter called the order, which indicates the complexity of the overall structure.

How can we use recursion to make art?

C++ Stanford graphics library

Graphics in CS106B

- Creating graphical programs is not one of our main focuses in this class, but a brief crash course in working with graphical programs is necessary to be able to code up some fractals of our own.
- The Stanford C++ libraries provide extensive capabilities to create custom graphical programs. The full documentation of these capabilities can be found in the official documentation.
- We will abstract away almost all of the complexity for you via provided helper functions.
- There are two main classes/components of the library you need to know: GWindow and GPoint

GWindow

- A GWindow is an abstraction for the graphical window upon which we will do all of our drawing.

GWindow

- A GWindow is an abstraction for the graphical window upon which we will do all of our drawing.
- The window defines a coordinate system of $x-y$ values
- The top left corner is $(0,0)$
- The bottom right corner is
(windowWidth, windowHeight)
$(0,0)$

GWindow

- A GWindow is an abstraction for the graphical window upon which we will do all of our drawing.
- The window defines a coordinate system of x - y values
- The top left corner is $(0,0)$
- The bottom right corner is
(windowWidth, windowHeight)
- All lines and shapes drawn on the window are defined by their (\mathbf{x}, y) coordinates
$(200,100)$

$(400,250)$

GPoint

- A GPoint is a handy way to bundle up the $x-y$ coordinates for a specific point in the window.
- Very similar in functionality to the GridLocation struct we learned about before!

GPoint

- A GPoint is a handy way to bundle up the $x-y$ coordinates for a specific point in the window.
- Very similar in functionality to the GridLocation struct we learned about before!

GPoint topLeft(200, 100);
GPoint bottomRight(400, 250);
drawFilledRect(topLeft, bottomRight);
GPoint midpoint $=\{$
(topLeft.x + bottomRight.x)/2,
(topLeft.y + bottomRight.y)/ 2 \};
$(200,100)$

Cantor Set example

$\square \square$	$\square \square$	$\square \square$																
II II	II II	II II																
\|							\|						\|					

Cantor Set

- The Cantor fractal is a set of lines where there is one main line, and below that there are two other lines: each $1 / 3$ of the width of the original line, with one on the left and one on the right (with a $1 / 3$ separation of whitespace between them)
- Below each of the other lines is an identical situation: two $1 / 3$ lines.
- This repeats until the lines are no longer visible.
- The factors to differentiate the fractal components: size, position, orientation, and order

An order-0 Cantor Set

An order-1 Cantor Set

An order-2 Cantor Set

An order-6 Cantor Set

An order-6 Cantor Set

Another Cantor Set

An order-6 Cantor Set

ㅍII
 ||| ||||
 ||| ||II

|| || || || $\|\|$

How to draw an order-n Cantor Set

How to draw an order-n Cantor Set

1. Draw a line from start to end.

How to draw an order-n Cantor Set

1. Draw a line from start to end.

2. Underneath the left third, draw a Cantor Set of order-(n - 1).

How to draw an order-n Cantor Set

1. Draw a line from start to end.

2. Underneath the left third, draw a Cantor Set of order-(n - 1).
3. Underneath the right third, draw a Cantor Set of order-(n - 1).

How to draw an order-n Cantor Set

Base case: order == 0

1. Draw a line from start to end.

2. Underneath the left third, draw a Cantor Set of order-(n - 1).
3. Underneath the right third, draw a Cantor Set of order-(n - 1).

Cantor Set demo

[Qt Creator]

Real-world application of the Cantor Set

Sierpinski Carpet example

:

Sierpinski Carpet

- First described by Wacław Sierpiński in 1916
- A generalization of the Cantor Set to two dimensions!
- Defined by the subdivision of a shape (a square in this case) into smaller copies of itself.
- The same pattern applied to a triangle
 yields a Sierpinski triangle, which you will code up on the next assignment.

An order-O Sierpinski Carpet

An order-1 Sierpinski Carpet

An order-1 carpet is subdivided into eight order-0 carpets arranged in this grid pattern

What are the base and recursive cases that define an order 2 Sierpinski Carpet fractal?

An order-2 Sierpinski Carpet

\square	\square	\square
\square		\square
\square	\square	\square

Order 2 Sierpinski carpet

Order 5 Sierpinski carpet

Sierpinski Carpet Formalized

- Base Case (order-0)
- Draw a filled square at the appropriate location

Sierpinski Carpet Formalized

- Base Case (order-0)
- Draw a filled square at the appropriate location
- Recursive Case (order-n, $\mathrm{n} \neq 0$)
- Draw 8 order n-1 Sierpinski carpets, arranged in a 3×3 grid, omitting the center location

Sierpinski Carpet Formalized

- Base Case (order-0)
- Draw a filled square at the appropriate location
- Recursive Case (order-n, $\mathrm{n} \neq 0$)
- Draw 8 order n-1 Sierpinski carpets, arranged in a 3×3 grid, omitting the center location

$(0,0)$	$(0,1)$	$(0,2)$
$(1,0)$		$(1,2)$
$(2,0)$	$(2,1)$	$(2,2)$

Sierpinski Carpet Formalized

- Base Case (order-0)
- Draw a filled square at the appropriate location
- Recursive Case (order-n, $\mathrm{n} \neq 0$)
- Draw 8 order n-1 Sierpinski carpets, arranged in a 3×3 grid, omitting the center location
■ i.e. Draw an n-1 fractal at (0,0), draw an n-1 fractal at (0,1), draw an n-1 fractal at (0,2)...

$(0,0)$	$(0,1)$	$(0,2)$
$(1,0)$		$(1,2)$
$(2,0)$	$(2,1)$	$(2,2)$

Sierpinski Carpet Pseudocode (Take 1)

```
drawSierpinskiCarpet (x, y, order):
if (order == O)
    drawFilledSquare(x, y, BASE_SIZE)
```


Sierpinski Carpet Pseudocode (Take 1)

drawSierpinskiCarpet (x, y, order):

```
if (order == 0)
    drawFilledSquare(x, y, BASE_SIZE)
else
    drawSierpinskiCarpet(newX(x, y, 0, 0), newY(x, y, 0, 0), order -1)
    drawSierpinskiCarpet(newX(x, y, 0, 1), newY(x, y, 0, 1), order -1)
    drawSierpinskiCarpet(newX(x, y, 0, 2), newY(x, y, 0, 2), order -1)
    drawSierpinskiCarpet(newX(x, y, 1, 0), newY(x, y, 1, 0), order -1)
    drawSierpinskiCarpet(newX(x, y, 1, 2), newY(x, y, 1, 2), order -1)
    drawSierpinskiCarpet(newX (x, y, 2, 0), newY(x, y, 2, 0), order -1)
    drawSierpinskiCarpet(newX (x, y, 2, 1), newY(x, y, 2, 1), order -1)
    drawSierpinskiCarpet(newX(x, y, 2, 2), newY(x, y, 2, 2), order -1)
```


Sierpinski Carpet Pseudocode (Take 1)

drawSierpinskiCarpet (x, y, order):

Sierpinski Carpet Pseudocode (Take 2)

```
drawSierpinskiCarpet (x, y, order):
```

 if (order == 0)
 drawFilledSquare (x, y, BASE_SIZE)
 else
 for row \(=0\) to row \(=2\) :
 for col = 0 to col = 2:
 if (col != 1 || row != 1):
 x_i \(=\) newX(\(x, y\), row, col)
 y_i \(=\) newY (x,\(y\), row, col)
 drawSierpinskiCarpet(x_i, Y_i, order - 1)

Iteration + Recursion

- It's completely reasonable to mix iteration and recursion in the same function.
- Here, we're firing off 8 recursive calls, and the easiest way to do that is with a double for loop.
- Recursion doesn't mean "the absence of iteration." It just means "solving a problem by solving smaller copies of that same problem."
- Iteration and recursion can be very powerful in combination!

Sierpinski Carpet demo

Towers of Hanoi

- How to solve the problem as you increase the number of disks.
- How to define this problem recursively?

Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination
(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

Pseudocode for 3 disks

(1) Move disk 1 to destination
(5) Move disk 1 to source
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(6) Move disk 2 to destination
(4) Move disk 3 to destination
(7) Move disk 1 to destination

Towers of Hanoi with 4 disks

source

auxiliary

destination

Towers of Hanoi with 4 disks

- We want to first move the biggest disk over to the destination peg.

source

auxiliary

destination

Towers of Hanoi with 4 disks

- We want to first move the biggest disk over to the destination peg.
- We need to get the top three disks out of the way.

source

auxiliary

destination

Towers of Hanoi with 4 disks

- We want to first move the biggest disk over to the destination peg.
- We need to get the top three disks out of the way.
- We already have an algorithm for moving three disks from a source peg to a destination peg!

source

auxiliary

destination

Pseudocode for 3 disks

Idea: Move disks to auxiliary instead of destination!

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination
(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

Towers of Hanoi with 4 disks

- We want to first move the biggest disk over to the destination peg.

source

auxiliary

destination

Towers of Hanoi with 4 disks

- We want to first move the biggest disk over to the destination peg.

Towers of Hanoi with 4 disks

- We want to first move the biggest disk over to the destination peg.
- Now we need to move the stack of three from auxiliary to destination.

Towers of Hanoi with 4 disks

- We want to first move the biggest disk over to the destination peg.
- Now we need to move the stack of three from auxiliary to destination.

Use our
 existing 3-disk algorithm!

Pseudocode for 3 disks

Idea: Move disks from auxiliary

(1) Move disk 1 to destination
(5) Move disk 1 to source
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(6) Move disk 2 to destination
(4) Move disk 3 to destination
(7) Move disk 1 to destination

How could we define the Towers of Hanoi solution recursively?

Towers of Hanoi solution

[live coding]

What's next?

Advanced Recursion Examples

