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Today’s 
question

How can we represent and 
organize complex systems 
of interconnected 
components?



Today’s 
topics

1. Use Cases for Graphs

2. Graph Definition and 
Terminology

3. Graph Algorithms (BFS, 
Dijkstra and A*)



How can we represent and 
organize complex systems of 
interconnected components?



Graphs



Social Networks



Chemical Bonds



The Interstate Highway System



Flowcharts
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The Internet!



What is a graph?



graph
A structured way to represent 

relationships between different entities.

Definition
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Our first graph!

● A structured way to represent relationships between different entities.

A graph 
consists of a 
set of nodes 
connected by 
edges.

Edges



Graph Terminology



Graph Terminology 

● There are lots of different terms used when talking about graphs and their 
properties. Let's explore some of them!



Graph Terminology 

Two nodes are 
neighbors if 
they are 
directly 
connected by 
an edge.



Graph Terminology 

A path between two 
nodes is defined be 
a sequence of 
edges that can be 
followed to traverse 
between the two 
nodes.



Graph Terminology 

The length of a path 
is the number of 
edges that make up 
the path. This path 
has length 2.



Graph Terminology 

A cycle is a path that 
begins and ends at 
the same node.



Graph Terminology 



Graph Terminology 

Are we allowed to 
have edges that 
look like this?



Graph Terminology 

A loop is an edge 
directly from a node 
back to itself. Some 
graphs allow loops 
and some graphs 
don't!



Graph Terminology 

A node is reachable 
from another node if 
a path exists between 
the two nodes.



Graph Terminology 

A graph is connected 
if all nodes are 
reachable from all 
other nodes. This 
graph is connected!



Graph Terminology 

A graph is connected 
if all nodes are 
reachable from all 
other nodes. This 
graph is not 
connected!



Graph Terminology 

A graph is complete 
if every node has an 
edge connecting it to 
every other node!



Graph Terminology Summary

● Graph structures
○ Two nodes are neighbors if they are directly connected by an edge.
○ A path between two nodes is a sequence of edges connecting them. The length of 

a path is defined by the number of edges in the path.
○ A cycle is a path that starts and ends at the same node.
○ A loop is an edge that connects a node to itself.

● Graph properties
○ A node is reachable from another node if a path between the two nodes in the 

graph exists.
○ A graph is connected if all nodes are reachable from all other nodes.
○ A graph is complete if edges exist between all pairs of nodes in the graph.



Types of graphs



Different types of graphs

● Some graphs are directed. These represent situations where relationships are 
unidirectional (an action/verb that explicitly implies only one direction).
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Different types of graphs

● Some graphs are directed. These represent situations where relationships are 
unidirectional (an action/verb that explicitly implies only one direction).
○ Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Note: It is possible for a 
relationship in a directed 
graph to go both ways 
between two nodes, but it 
would need to be explicitly 
stated.



Different types of graphs

● Some graphs are undirected. These represent situations where relationships 
are bidirectional (the action/verb inherently applies to both entities).



Different types of graphs

● Some graphs are undirected. These represent situations where relationships 
are bidirectional (the action/verb inherently applies to both entities).
○ Ex: I am related to my brother, and he is related to me. The relationship applies to both of us.





Different types of graphs

● Some graphs are weighted. These represent situations where not all 
relationships between entities are equal. 



Different types of graphs

● Some graphs are weighted. These represent situations where not all 
relationships between entities are equal. 
○ Ex: The different bonds between atoms in a single molecule all have different bond energies 

and strengths.



Chemical Bonds





Different types of graphs

● Some graphs are unweighted. These represent situations where all 
relationships between entities have equal importance. 



Different types of graphs

● Some graphs are unweighted. These represent situations where all 
relationships between entities have equal importance. 
○ Ex: All connected words in a word ladder are one letter apart from one another.



Types of Graphs Summary

● Directed: Unidirectional relationships between nodes, represented with a 
pointed arrow.

● Undirected: Bidirectional relationships between nodes, represented with an 
arrow-less line.

● Weighted: Each edge is assigned a numerical "weight" representing its relative 
significance/strength.

● Unweighted: Each edge has equal significance, no labels assigned.



Revisiting Graph 
Examples



Revisiting Graph Examples: Social Network

Properties

● Nodes: People

● Edges: "Friendship" or 
"Following"

● Undirected (Facebook) 
or Directed (Instagram)

● Unweighted



Revisiting Graph Examples: Chemical Bonds

Properties

● Nodes: Atoms

● Edges: Bonds 
(covalent or ionic)

● Undirected

● Weighted



Revisiting Graph Examples: Interstate Highways

Properties

● Nodes: Cities

● Edges: 
Highways/roads

● Undirected

● Weighted



Revisiting Graph Examples: Flowcharts

Properties

● Nodes: Events/Actions

● Edges: Transitions

● Directed

● Unweighted



Revisiting Graph Examples: The Internet

Properties

● Nodes: Devices (phones, 
computers, etc.)

● Edges: Connection pathways 
(Bluetooth, WiFi, Ethernet, cables)

● Undirected

● Can be weighted or unweighted



Graphs as Linked Data 
Structures



Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked 
lists and trees. These, along with graphs, are all linked data structures!
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● We've seen nodes connected by edges (links) before when discussing linked 
lists and trees. These, along with graphs, are all linked data structures!
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Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked 
lists and trees. These, along with graphs, are all linked data structures!

● What differentiates each of these linked data structures?
○ Linked lists: Linear structure, each node connected to at most one other 

node.
○ Trees: Nodes can connect to multiple other nodes, no cycles, parent/child 

relationship and a single, special root node.
○ Graphs: No restrictions. It's the wild, wild west of the node-based world!



The Wild World of Graphs

● Graphs can have cycles…



The Wild World of Graphs

● Graphs can have cycles, and there is no notion of a parent-child relationship 
between nodes.



The Wild World of Graphs

● Graphs have no nodes that are more important than other nodes. In particular, 
there is no root node!



Graphs are the most powerful, flexible, and 
expressive abstraction that we can use to model 
relationships between different distributed 
entities. You will find graphs everywhere you look!



Representing Graphs
How do we store and represent graphs in code?



Take 1: Adjacency List
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Take 1: Adjacency List

● We can represent a graph as a map 
from nodes to the collection of 
nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to



Take 1: Adjacency List

● The approach we just saw is called an adjacency list in comes in a number of 
different forms:
○ Map<Node, Vector<Node>>

○ HashMap<Node, HashSet<Node>>

○ Map<Node, Set<Node>>

○ Vector<Node> <- in this case, the Node struct holds collection of 

its adjacent neighbors



Take 1: Adjacency List

● The approach we just saw is called an adjacency list in comes in a number of 
different forms:
○ Map<Node, Vector<Node>>

○ HashMap<Node, HashSet<Node>>

○ Map<Node, Set<Node>>

○ Vector<Node> <- in this case, the Node struct holds collection of 

its adjacent neighbors

● The core idea is that we have some kind of mapping associating each node 
with its outgoing edges (or neighboring nodes).



Take 2: Adjacency Matrix

● We can also use a two-dimensional 
matrix to represent the relationships 
in a graph.
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Take 2: Adjacency Matrix

● We can also use a two-dimensional 
matrix to represent the relationships 
in a graph.
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Take 2: Adjacency Matrix

● We can also use a two-dimensional 
matrix to represent the relationships 
in a graph.
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Take 2: Adjacency Matrix

● We can also use a two-dimensional 
matrix to represent the relationships 
in a graph.
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0
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Going forward, unless stated otherwise, assume 
we’re using an adjacency list representation.



Announcements



Announcements

● Assignment 6 is due on Wednesday, August 11 at 11:59pm PDT. This is a hard 
deadline – there is no grace period, and no submissions will be accepted 
after this time.

● Your last section is this week!

● Thursday: No class! Use the time to review for the End of Quarter Assessment.

● End of Quarter Assessment will be released on Friday, August 13 and is due 
on Sunday, August 15 at 11:59PM.



Graph Algorithms



Graph Traversal



Iterating over a Graph

● In a singly-linked list, there’s pretty much one way to iterate over the list: start 
at the front and go forward!
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○ Pre-order traversal
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○ Post-order traversal



Iterating over a Graph

● In a singly-linked list, there’s pretty much one way to iterate over the list: start 
at the front and go forward!

● In a tree, there are many traversal strategies:
○ Pre-order traversal
○ In-order traversal
○ Post-order traversal

● There are many ways to iterate over a graph, each of which have different 
properties.
○ First idea: Let's revisit breadth-first search!



Breadth-First Search
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then three hops away, etc.
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Revisiting Breadth-First Search
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then three hops away, etc.
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Revisiting Breadth-First Search

● Core Idea: Find everything one hop away from the start, then two hops away, 
then three hops away, etc.

● Goal: Find the shortest path from A to F. 
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Graph Breadth-First Search

● The BFS algorithm on graphs looks very similar to what we saw way back in 
Week 2. The main difference is we just keep track of nodes rather than partial 
paths.

● BFS Pseudocode

● Visualization 1

● Visualization 2

bfs-from(node v) {
    make a queue of nodes, initially seeded with v

    while (queue not empty) {
        curr = dequeue from queue
        "process" curr
        for each node adjacent to curr {
            if that node hasn't yet been visited, enqueue it
        }
    }
}

https://visualgo.net/en/dfsbfs
https://csacademy.com/lesson/breadth_first_search/


Breadth-First Search Properties

● Breadth-First Search allows us to find the shortest path/distance between any 
two nodes in an unweighted graph.

● However, BFS doesn't do anything to incorporate edge weights when applied 
to a weighted graph. 

● Most real-world applications of finding the shortest path between two nodes in 
a graph occur on weighted graphs. 

● How can we improve BFS to take into account edge weights?



Dijkstra's Algorithm



The Problem

● Let's implement Google Maps!
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The Problem

● Let's implement Google Maps!

● As we've previously discussed, a road network can be thought of as a 
weighted graph between many different destination points.
○ The graph weights are based on many factors including physical distance, traffic, historical data 

about stop light patterns, etc. 

● We want to prioritize finding the quickest route between our starting point and 
our destination point, on this weighted graph. 

● How can we do it?



The Idea

● Rather than simply organizing the nodes in the order in which we visit them, 
order them by the sum of the weights on the shortest path to that node.



The Idea

● Rather than simply organizing the nodes in the order in which we visit them, 
order them by the sum of the weights on the shortest path to that node.

● What data structure will be useful for this? A priority queue!



The Idea

● Rather than simply organizing the nodes in the order in which we visit them, 
order them by the sum of the weights on the shortest path to that node.

● What data structure will be useful for this? A priority queue!

● The seed node (starting point) is enqueued with priority 0.  Every subsequent 
node is enqueued with priority equal to the current node's priority + the weight 
of the edge being traversed.



The Idea

● Rather than simply organizing the nodes in the order in which we visit them, 
order them by the sum of the weights on the shortest path to that node.

● What data structure will be useful for this? A priority queue!

● The seed node (starting point) is enqueued with priority 0.  Every subsequent 
node is enqueued with priority equal to the current node's priority + the weight 
of the edge being traversed.

● The priority queue guarantees we will visit nodes in order of increasing 
distance from the seed node.



Dijkstra's Algorithm Pseudocode
dijkstras-from(node v) {
    Initialize an empty priority queue of nodes
    Add v to the priority queue with priority 0

    while (queue not empty) {
        currPriority = peek priority of first element in queue
        curr = dequeue from queue
        "process" curr
        for each node adjacent to curr {
            if that node hasn't yet been visited, enqueue it with priority
            equal to currPriority + edge weight between curr and node

            if that node has been visited and is still in the priority queue,
            update its priority to be currPriority + edge weight
        }
    }
}



Dijkstra's In Practice
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Done! We know the 
shortest path from SJ 
to SF has a total path 
weight of 15.
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Question: How would you 
store information along 
the way to be able to 
reconstruct the path?



Dijkstra's Algorithm Properties

● Dijkstra's Algorithm allows us to find the shortest path/distance between any 
two nodes in a weighted graph.

● Dijkstra's Algorithm forms the basis of many powerful real-world systems that 
are built on top of graphs!

● However, one of the downsides to Dijkstra's algorithm is that it can, in many 
circumstances, ignore other sources of information that might prove useful to 
finding the shortest path in the fewest number of steps.

● Can we find the solution while using less steps than with Dijkstra's Algorithm?



A* Search
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● Suppose we wanted to find the shortest 
path from A to J in the graph to the right.
○ Given no other information, we can do no 

better than using Dijkstra's.
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A* Search

● Suppose we wanted to find the shortest 
path from A to J in the graph to the right.
○ Given no other information, we can do no 

better than using Dijkstra's.

● But, if we know that this graph represents 
a map, we can start reasoning about 
cardinal directions.

● Idea: If we our goal is to go north from A 
to J, exploring paths to the south 
probably doesn't make sense!



Heuristics

● We call the idea of using external information about a graph a heuristic. 
○ The heuristic estimates the cost of the cheapest path to the goal. 
○ It is different for every problem and corresponds to some real-world information.



Heuristics

● We call the idea of using external information about a graph a heuristic. 

● A heuristic should always underestimate the distance to the goal.
○ If it overestimates the distance, it could end up finding a solution that is not actually optimal 

(though it will do so relatively fast).



Heuristics

● We call the idea of using external information about a graph a heuristic. 

● A heuristic should always underestimate the distance to the goal.

● We use the heuristic as an addition to the value for the priority.
○ For the case of maps, if the distance to the destination is closer, this will weight the nodes in 

that direction to be preferable (i.e., they will actually have a smaller numerical priority value).
○ In other words, priority(u) = weight(s, u) + heuristic(u, d), where s is the start, u is 

the node we are considering, and d is the destination.



Heuristics

● We call the idea of using external information about a graph a heuristic. 

● A heuristic should always underestimate the distance to the goal.

● We use the heuristic as an addition to the value for the priority.

● Common heuristics for distance-based graphs include Manhattan distance, 
as-the-crow-flies distance, and Chebyshev distance. 



Graph Search Demo
https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/


Beyond Traversal



More Graph Algorithms

● There are many, many different graph algorithms out there.
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More Graph Algorithms

● There are many, many different graph algorithms out there.

● Some famous examples include:
○ BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.

https://en.wikipedia.org/wiki/Category:Graph_algorithms


Find a minimum spanning tree from a given graph.

Kruskal's Algorithm



Topological Sort

"Sort" the nodes in a dependency graph in such a way that traversing the nodes in order results in 
all dependencies being fulfilled at each point in time.



Traveling Salesman Algorithm

Given a map of cities and the distances between them, find the shortest path that traverses all cities 
in the map.



More Graph Algorithms

● There are many, many different graph algorithms out there.

● Some famous examples include:
○ BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
○ Kruskal's Algorithm: Find a minimum spanning tree from a given graph.
○ Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the 

nodes in order results in all dependencies being fulfilled at each point in time.
○ Traveling salesman: Given a map of cities and the distances between them, find the shortest 

path that traverses all cities in the map.

● Graphs can also be used in conjunction with machine learning algorithms to 
accomplish cool things. 

https://en.wikipedia.org/wiki/Category:Graph_algorithms


Summary



Graphs Summary

● Graphs are the most powerful and flexible manner for organizing data in a 
linked data structure, particularly when expressing complex patterns and 
relationships between different data entities. 

● Graphs are composed of nodes connected by edges.

● Graphs can be directed, undirected, weighted, or unweighted.

● Graph algorithms can be used to find interesting properties of graphs. BFS, 
Dijkstra's Algorithm, and A* Search are three ways to find the shortest path 
between two nodes in a graph.



What’s next?



vectors + grids

    stacks + queues

    sets + maps
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Life after CS106B!
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