
Graphs and Graph
Algorithms

What has been your favorite part of this summer?

(put your answers in the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

real-world
algorithms

Today’s
question

How can we represent and
organize complex systems
of interconnected
components?

Today’s
topics

1. Use Cases for Graphs

2. Graph Definition and
Terminology

3. Graph Algorithms (BFS,
Dijkstra and A*)

How can we represent and
organize complex systems of
interconnected components?

Graphs

Social Networks

Chemical Bonds

The Interstate Highway System

Flowcharts

The Internet!

The Internet!

What is a graph?

graph
A structured way to represent

relationships between different entities.

Definition

Our first graph!

● A structured way to represent relationships between different entities.

Our first graph!

● A structured way to represent relationships between different entities.

Our first graph!

● A structured way to represent relationships between different entities.

A graph
consists of a
set of nodes
connected by
edges.

Our first graph!

● A structured way to represent relationships between different entities.

A graph
consists of a
set of nodes
connected by
edges.

Nodes

Our first graph!

● A structured way to represent relationships between different entities.

A graph
consists of a
set of nodes
connected by
edges.

Edges

Graph Terminology

Graph Terminology

● There are lots of different terms used when talking about graphs and their
properties. Let's explore some of them!

Graph Terminology

Two nodes are
neighbors if
they are
directly
connected by
an edge.

Graph Terminology

A path between two
nodes is defined be
a sequence of
edges that can be
followed to traverse
between the two
nodes.

Graph Terminology

The length of a path
is the number of
edges that make up
the path. This path
has length 2.

Graph Terminology

A cycle is a path that
begins and ends at
the same node.

Graph Terminology

Graph Terminology

Are we allowed to
have edges that
look like this?

Graph Terminology

A loop is an edge
directly from a node
back to itself. Some
graphs allow loops
and some graphs
don't!

Graph Terminology

A node is reachable
from another node if
a path exists between
the two nodes.

Graph Terminology

A graph is connected
if all nodes are
reachable from all
other nodes. This
graph is connected!

Graph Terminology

A graph is connected
if all nodes are
reachable from all
other nodes. This
graph is not
connected!

Graph Terminology

A graph is complete
if every node has an
edge connecting it to
every other node!

Graph Terminology Summary

● Graph structures
○ Two nodes are neighbors if they are directly connected by an edge.
○ A path between two nodes is a sequence of edges connecting them. The length of

a path is defined by the number of edges in the path.
○ A cycle is a path that starts and ends at the same node.
○ A loop is an edge that connects a node to itself.

● Graph properties
○ A node is reachable from another node if a path between the two nodes in the

graph exists.
○ A graph is connected if all nodes are reachable from all other nodes.
○ A graph is complete if edges exist between all pairs of nodes in the graph.

Types of graphs

Different types of graphs

● Some graphs are directed. These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).

Different types of graphs

● Some graphs are directed. These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).
○ Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Different types of graphs

● Some graphs are directed. These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).
○ Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Note: It is possible for a
relationship in a directed
graph to go both ways
between two nodes, but it
would need to be explicitly
stated.

Different types of graphs

● Some graphs are undirected. These represent situations where relationships
are bidirectional (the action/verb inherently applies to both entities).

Different types of graphs

● Some graphs are undirected. These represent situations where relationships
are bidirectional (the action/verb inherently applies to both entities).
○ Ex: I am related to my brother, and he is related to me. The relationship applies to both of us.

Different types of graphs

● Some graphs are weighted. These represent situations where not all
relationships between entities are equal.

Different types of graphs

● Some graphs are weighted. These represent situations where not all
relationships between entities are equal.
○ Ex: The different bonds between atoms in a single molecule all have different bond energies

and strengths.

Chemical Bonds

Different types of graphs

● Some graphs are unweighted. These represent situations where all
relationships between entities have equal importance.

Different types of graphs

● Some graphs are unweighted. These represent situations where all
relationships between entities have equal importance.
○ Ex: All connected words in a word ladder are one letter apart from one another.

Types of Graphs Summary

● Directed: Unidirectional relationships between nodes, represented with a
pointed arrow.

● Undirected: Bidirectional relationships between nodes, represented with an
arrow-less line.

● Weighted: Each edge is assigned a numerical "weight" representing its relative
significance/strength.

● Unweighted: Each edge has equal significance, no labels assigned.

Revisiting Graph
Examples

Revisiting Graph Examples: Social Network

Properties

● Nodes: People

● Edges: "Friendship" or
"Following"

● Undirected (Facebook)
or Directed (Instagram)

● Unweighted

Revisiting Graph Examples: Chemical Bonds

Properties

● Nodes: Atoms

● Edges: Bonds
(covalent or ionic)

● Undirected

● Weighted

Revisiting Graph Examples: Interstate Highways

Properties

● Nodes: Cities

● Edges:
Highways/roads

● Undirected

● Weighted

Revisiting Graph Examples: Flowcharts

Properties

● Nodes: Events/Actions

● Edges: Transitions

● Directed

● Unweighted

Revisiting Graph Examples: The Internet

Properties

● Nodes: Devices (phones,
computers, etc.)

● Edges: Connection pathways
(Bluetooth, WiFi, Ethernet, cables)

● Undirected

● Can be weighted or unweighted

Graphs as Linked Data
Structures

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

● What differentiates each of these linked data structures?

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

● What differentiates each of these linked data structures?
○ Linked lists: Linear structure, each node connected to at most one other

node.

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

● What differentiates each of these linked data structures?
○ Linked lists: Linear structure, each node connected to at most one other

node.
○ Trees: Nodes can connect to multiple other nodes, no cycles, parent/child

relationship and a single, special root node.

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

● What differentiates each of these linked data structures?
○ Linked lists: Linear structure, each node connected to at most one other

node.
○ Trees: Nodes can connect to multiple other nodes, no cycles, parent/child

relationship and a single, special root node.
○ Graphs: No restrictions. It's the wild, wild west of the node-based world!

The Wild World of Graphs

● Graphs can have cycles…

The Wild World of Graphs

● Graphs can have cycles, and there is no notion of a parent-child relationship
between nodes.

The Wild World of Graphs

● Graphs have no nodes that are more important than other nodes. In particular,
there is no root node!

Graphs are the most powerful, flexible, and
expressive abstraction that we can use to model
relationships between different distributed
entities. You will find graphs everywhere you look!

Representing Graphs
How do we store and represent graphs in code?

Take 1: Adjacency List

Take 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Take 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Take 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

Take 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

Take 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

Take 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

Take 1: Adjacency List

● The approach we just saw is called an adjacency list in comes in a number of
different forms:
○ Map<Node, Vector<Node>>

○ HashMap<Node, HashSet<Node>>

○ Map<Node, Set<Node>>

○ Vector<Node> <- in this case, the Node struct holds collection of

its adjacent neighbors

Take 1: Adjacency List

● The approach we just saw is called an adjacency list in comes in a number of
different forms:
○ Map<Node, Vector<Node>>

○ HashMap<Node, HashSet<Node>>

○ Map<Node, Set<Node>>

○ Vector<Node> <- in this case, the Node struct holds collection of

its adjacent neighbors

● The core idea is that we have some kind of mapping associating each node
with its outgoing edges (or neighboring nodes).

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

1

1

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

1

1

1

1

1

1

1

11

1

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

1

1

1

1

1

1

1

11

1

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

1

1

1

1

1

1

1

11

1

0

0

Take 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

1

1

1

1

1

1

1

11

1

0

0

0

0

0

0

0 0

0 0

0

0 0

Going forward, unless stated otherwise, assume
we’re using an adjacency list representation.

Announcements

Announcements

● Assignment 6 is due on Wednesday, August 11 at 11:59pm PDT. This is a hard
deadline – there is no grace period, and no submissions will be accepted
after this time.

● Your last section is this week!

● Thursday: No class! Use the time to review for the End of Quarter Assessment.

● End of Quarter Assessment will be released on Friday, August 13 and is due
on Sunday, August 15 at 11:59PM.

Graph Algorithms

Graph Traversal

Iterating over a Graph

● In a singly-linked list, there’s pretty much one way to iterate over the list: start
at the front and go forward!

Iterating over a Graph

● In a singly-linked list, there’s pretty much one way to iterate over the list: start
at the front and go forward!

● In a tree, there are many traversal strategies:
○ Pre-order traversal
○ In-order traversal
○ Post-order traversal

Iterating over a Graph

● In a singly-linked list, there’s pretty much one way to iterate over the list: start
at the front and go forward!

● In a tree, there are many traversal strategies:
○ Pre-order traversal
○ In-order traversal
○ Post-order traversal

● There are many ways to iterate over a graph, each of which have different
properties.
○ First idea: Let's revisit breadth-first search!

Breadth-First Search

Revisiting Breadth-First Search

● Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.

Revisiting Breadth-First Search

● Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.

● Goal: Find the shortest path from A to F.

B

C

D

E

A

F

Revisiting Breadth-First Search

● Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.

● Goal: Find the shortest path from A to F.

B

C

D

E

A

F

0

Revisiting Breadth-First Search

● Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.

● Goal: Find the shortest path from A to F.

B

C

D

E

A

F

0

1

1

Revisiting Breadth-First Search

● Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.

● Goal: Find the shortest path from A to F.

B

C

D

E

A

F

0

1

1

2

2

Revisiting Breadth-First Search

● Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.

● Goal: Find the shortest path from A to F.

B

C

D

E

A

F

0

1

1

2

2

3

Graph Breadth-First Search

● The BFS algorithm on graphs looks very similar to what we saw way back in
Week 2. The main difference is we just keep track of nodes rather than partial
paths.

● BFS Pseudocode

● Visualization 1

● Visualization 2

bfs-from(node v) {
 make a queue of nodes, initially seeded with v

 while (queue not empty) {
 curr = dequeue from queue
 "process" curr
 for each node adjacent to curr {
 if that node hasn't yet been visited, enqueue it
 }
 }
}

https://visualgo.net/en/dfsbfs
https://csacademy.com/lesson/breadth_first_search/

Breadth-First Search Properties

● Breadth-First Search allows us to find the shortest path/distance between any
two nodes in an unweighted graph.

● However, BFS doesn't do anything to incorporate edge weights when applied
to a weighted graph.

● Most real-world applications of finding the shortest path between two nodes in
a graph occur on weighted graphs.

● How can we improve BFS to take into account edge weights?

Dijkstra's Algorithm

The Problem

● Let's implement Google Maps!

The Problem

● Let's implement Google Maps!

● As we've previously discussed, a road network can be thought of as a
weighted graph between many different destination points.
○ The graph weights are based on many factors including physical distance, traffic, historical data

about stop light patterns, etc.

The Problem

● Let's implement Google Maps!

● As we've previously discussed, a road network can be thought of as a
weighted graph between many different destination points.
○ The graph weights are based on many factors including physical distance, traffic, historical data

about stop light patterns, etc.

● We want to prioritize finding the quickest route between our starting point and
our destination point, on this weighted graph.

The Problem

● Let's implement Google Maps!

● As we've previously discussed, a road network can be thought of as a
weighted graph between many different destination points.
○ The graph weights are based on many factors including physical distance, traffic, historical data

about stop light patterns, etc.

● We want to prioritize finding the quickest route between our starting point and
our destination point, on this weighted graph.

● How can we do it?

The Idea

● Rather than simply organizing the nodes in the order in which we visit them,
order them by the sum of the weights on the shortest path to that node.

The Idea

● Rather than simply organizing the nodes in the order in which we visit them,
order them by the sum of the weights on the shortest path to that node.

● What data structure will be useful for this? A priority queue!

The Idea

● Rather than simply organizing the nodes in the order in which we visit them,
order them by the sum of the weights on the shortest path to that node.

● What data structure will be useful for this? A priority queue!

● The seed node (starting point) is enqueued with priority 0. Every subsequent
node is enqueued with priority equal to the current node's priority + the weight
of the edge being traversed.

The Idea

● Rather than simply organizing the nodes in the order in which we visit them,
order them by the sum of the weights on the shortest path to that node.

● What data structure will be useful for this? A priority queue!

● The seed node (starting point) is enqueued with priority 0. Every subsequent
node is enqueued with priority equal to the current node's priority + the weight
of the edge being traversed.

● The priority queue guarantees we will visit nodes in order of increasing
distance from the seed node.

Dijkstra's Algorithm Pseudocode
dijkstras-from(node v) {
 Initialize an empty priority queue of nodes
 Add v to the priority queue with priority 0

 while (queue not empty) {
 currPriority = peek priority of first element in queue
 curr = dequeue from queue
 "process" curr
 for each node adjacent to curr {
 if that node hasn't yet been visited, enqueue it with priority
 equal to currPriority + edge weight between curr and node

 if that node has been visited and is still in the priority queue,
 update its priority to be currPriority + edge weight
 }
 }
}

Dijkstra's In Practice

B

C

D

E

SJ

SF

Goal: Find the shortest path/distance from SJ to SF

9

1
70

1

10

4

3

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

higher priority lower priority

70

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

SJ

0

70

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

SJ

0 70

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

SJ

0

B

9

70

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

SJ

0

B

9

C

1

70

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

B

9

C

1

70

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

B

9

C

1 70

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

B

9

C

1

E

71

70

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

B

2

C

1 70

E

71

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

B

2

70

E

71

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

B

2 70

E

71

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

B

2

D

12

70

E

71

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

D

12

70

E

71

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

D

12 70

E

71

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

D

12 70

E

16

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

D

12 70

E

16

SF

15

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

70

E

16

SF

15

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

70

E

16

SF

15

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

70

E

16

SF

15

Done! We know the
shortest path from SJ
to SF has a total path
weight of 15.

Dijkstra's In Practice

B

C

D

E

SJ

SF9

1

1

10

4

3

70

E

16

SF

15

Question: How would you
store information along
the way to be able to
reconstruct the path?

Dijkstra's Algorithm Properties

● Dijkstra's Algorithm allows us to find the shortest path/distance between any
two nodes in a weighted graph.

● Dijkstra's Algorithm forms the basis of many powerful real-world systems that
are built on top of graphs!

● However, one of the downsides to Dijkstra's algorithm is that it can, in many
circumstances, ignore other sources of information that might prove useful to
finding the shortest path in the fewest number of steps.

● Can we find the solution while using less steps than with Dijkstra's Algorithm?

A* Search

A* Search

● Suppose we wanted to find the shortest
path from A to J in the graph to the right.
○ Given no other information, we can do no

better than using Dijkstra's.

A* Search

● Suppose we wanted to find the shortest
path from A to J in the graph to the right.
○ Given no other information, we can do no

better than using Dijkstra's.

● But, if we know that this graph represents
a map, we can start reasoning about
cardinal directions.

A* Search

● Suppose we wanted to find the shortest
path from A to J in the graph to the right.
○ Given no other information, we can do no

better than using Dijkstra's.

● But, if we know that this graph represents
a map, we can start reasoning about
cardinal directions.

● Idea: If we our goal is to go north from A
to J, exploring paths to the south
probably doesn't make sense!

Heuristics

● We call the idea of using external information about a graph a heuristic.
○ The heuristic estimates the cost of the cheapest path to the goal.
○ It is different for every problem and corresponds to some real-world information.

Heuristics

● We call the idea of using external information about a graph a heuristic.

● A heuristic should always underestimate the distance to the goal.
○ If it overestimates the distance, it could end up finding a solution that is not actually optimal

(though it will do so relatively fast).

Heuristics

● We call the idea of using external information about a graph a heuristic.

● A heuristic should always underestimate the distance to the goal.

● We use the heuristic as an addition to the value for the priority.
○ For the case of maps, if the distance to the destination is closer, this will weight the nodes in

that direction to be preferable (i.e., they will actually have a smaller numerical priority value).
○ In other words, priority(u) = weight(s, u) + heuristic(u, d), where s is the start, u is

the node we are considering, and d is the destination.

Heuristics

● We call the idea of using external information about a graph a heuristic.

● A heuristic should always underestimate the distance to the goal.

● We use the heuristic as an addition to the value for the priority.

● Common heuristics for distance-based graphs include Manhattan distance,
as-the-crow-flies distance, and Chebyshev distance.

Graph Search Demo
https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/

Beyond Traversal

More Graph Algorithms

● There are many, many different graph algorithms out there.

https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

● There are many, many different graph algorithms out there.

● Some famous examples include:

https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

● There are many, many different graph algorithms out there.

● Some famous examples include:
○ BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.

https://en.wikipedia.org/wiki/Category:Graph_algorithms

Find a minimum spanning tree from a given graph.

Kruskal's Algorithm

Topological Sort

"Sort" the nodes in a dependency graph in such a way that traversing the nodes in order results in
all dependencies being fulfilled at each point in time.

Traveling Salesman Algorithm

Given a map of cities and the distances between them, find the shortest path that traverses all cities
in the map.

More Graph Algorithms

● There are many, many different graph algorithms out there.

● Some famous examples include:
○ BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
○ Kruskal's Algorithm: Find a minimum spanning tree from a given graph.
○ Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the

nodes in order results in all dependencies being fulfilled at each point in time.
○ Traveling salesman: Given a map of cities and the distances between them, find the shortest

path that traverses all cities in the map.

● Graphs can also be used in conjunction with machine learning algorithms to
accomplish cool things.

https://en.wikipedia.org/wiki/Category:Graph_algorithms

Summary

Graphs Summary

● Graphs are the most powerful and flexible manner for organizing data in a
linked data structure, particularly when expressing complex patterns and
relationships between different data entities.

● Graphs are composed of nodes connected by edges.

● Graphs can be directed, undirected, weighted, or unweighted.

● Graph algorithms can be used to find interesting properties of graphs. BFS,
Dijkstra's Algorithm, and A* Search are three ways to find the shortest path
between two nodes in a graph.

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

Core
Tools

User/client
Implementation

real-world
algorithms

Multithreading and Parallel Computing

