
Hashing
What’s an example of compression

that you’ve seen when using technology?

(put your answers in the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data
structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic
real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data
structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic

Core
Tools

User/client
Implementation

real-world
algorithms

Today’s
question

How does hashing apply to
a variety of computational
tasks and real-world
problems?

Today’s
topics

1. What is a hash function?

2. Hashing in ADTs

3. Real-world applications of
hashing (Hashzam!)

Review
[Huffman coding]

Why we use compression

● Storing data using the ASCII encoding is portable across systems, but
is not ideal in terms of space usage.

● Building custom codes for specific strings might let us save space.

● Idea: Use this approach to build a compression algorithm to reduce
the amount of space needed to store text.
○ In particular, we are interested in algorithms that provide lossless compression.
○ Compression algorithms identify patterns in data and take advantage of those

patterns to come up with more efficient representations of that data!

Taking advantage of redundancy

● Not all letters have the same
frequency in KIRK'S DIKDIK.

● The frequencies of each letter
are shown to the right.

● So far, we’ve given each letter a
code of the same length.

● Key Question: Can we give
shorter encodings to more
common characters?

Prefix codes

● A prefix code is an encoding
system in which no code is a
prefix of another code.

● Here’s a sample prefix code for
the letters in KIRK'S DIKDIK.

Coding trees
● Main Insight: We can represent a prefix

coding scheme with a binary tree! This
special type of binary tree is called a coding
tree.

● A coding tree is valid if all the letters are
stored at the leaves, with internal nodes just
doing the routing.

● Goal: Find the best coding tree for a string.

C 0 6

0

0 0

1

1 1

S 1

0 1

Huffman coding
● Huffman coding is an algorithm for generating a coding tree for a given piece

of data that produces a provably minimal encoding for a given pattern of
letter frequencies.

● Different data (different text, different images, etc.) will each have their own
personalized Huffman coding tree.

● The Huffman coding algorithm is a flexible, powerful, adaptive algorithm for
data compression. And you will implement it on assignment 6!

Huffman coding pseudocode
● To generate the optimal encoding tree for a given piece of text:

○ Build a frequency table that tallies the number of times each character appears in
the text.

○ Initialize an empty priority queue that will hold partial trees (represented as
TreeNode*)

○ Create one leaf node per distinct character in the input string. Add each new
leaf node to the priority queue. The weight of that leaf is the frequency of the
character.

○ While there are two or more trees in the priority queue:
■ Dequeue the two trees with the smallest weight from the priority queue.
■ Combine them together to form a new tree whose weight is the sum of the

weights of the two trees.
■ Add that tree back to the priority queue.

Building
a Huffman tree

1) Build the frequency table

Input Text: MEMES!

1) Build the frequency table

Input Text: MEMES!

char frequency

M 2

E 2

S 1

! 1

2) Initialize the priority queue
higher priority lower priority

3) Add all unique characters as leaf nodes to queue
higher priority lower priority

char frequency

M 2

E 2

S 1

! 1

3) Add all unique characters as leaf nodes to queue
higher priority lower priority

! S E M

1 1 2 2

char frequency

M 2

E 2

S 1

! 1

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S

E M

1 1

2 2

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S

E M

1 1

2 2
0 1

2

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S

E M

1 1

2 2

0 1

2

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S

E M

1 1

2 2

0 1

2

0 1

4

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S E M

1 1 2 2

0 1

2

0 1

4

! S E M

1 1 2 2

0 1 0 1

0 1

! S E M

0 1 0 1

0 1

characte
r

code

M 11

E 10

S 01

! 00

characte
r

code

M 11

E 10

S 01

! 00

! S E M

0 1 0 1

0 1

Other valid trees are possible!

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S

E M

1 1

2 2

0 1

2

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S

E M

1 1

2 2
0 1

2

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S

E

M

1 1

2

2

0 1

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S

E

M

1 1

2

2

0 1

0 1

4

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

! S

E

M

1 1

2

2

0 1

0 1

4

! S

E

M

1 1

2

2

0 1

0 1

0 1

characte
r

code

M 0

E 11

S 101

! 100 ! S

E

M

1 1

2

2

0 1

0 1

0 1

A second tree!

!

M

S

0 1

E
0 1

0 1

characte
r

code

M 10

E 0

S 110

! 111

More options!

M SE !

0 1 0 1

0 1

characte
r

code

M 01

E 00

S 10

! 11

More options!

Huffman encoding summary
● Data compression is a very important real-world problem that relies on

patterns in data to find efficient, compact data representations schemes.

● In order to support variable-length encodings for data, we must use prefix
coding schemes. Prefix coding schemes can be modeled as binary trees.

● Huffman encoding uses a greedy algorithm to construct encodings by building
a tree from the bottom up, putting the most frequent characters higher up in
the coding tree.

● We need to send the encoding table with the compressed message.

What is hashing?

ADT Big-O Matrix
● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix
● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix
● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

Can we do better???

Can we get constant runtime? O(1)

Can we get constant runtime? O(1)
An idea...

Can we get constant runtime? (O(1))
An idea…

● Use an array implementation for the set, and when the user adds a value i to
your set, store it at index i in the array.

Can we get constant runtime? (O(1))
An idea…

● Use an array implementation for the set, and when the user adds a value i to
your set, store it at index i in the array.

● This would give us constant time lookup!

Can we get constant runtime? (O(1))
An idea…

● Use an array implementation for the set, and when the user adds a value i to
your set, store it at index i in the array.

● This would give us constant time lookup!

What are the problems with this approach…?

Can we get constant runtime? (O(1))
An idea…

● Use an array implementation for the set, and when the user adds a value i to
your set, store it at index i in the array.

● This would give us constant time lookup!

What are the problems with this approach…?

 set.add(1000);

Key Idea: Can we get O(1) runtime for lookup operations while
only using a fixed amount of space?

Hash functions

hash function
A function that takes in arbitrary inputs

and maps them to a fixed set of outputs.

Definition

Remember nameHash?
int nameHash(string first, string last){
 static const int kLargePrime = 16908799;
 static const int kSmallPrime = 127;
 int hashVal = 0;

 /* Iterate across all the characters in the first name, then the last name */
 for (char ch: first + last) {
 ch = tolower(ch);
 hashVal = (kSmallPrime * hashVal + ch) % kLargePrime;
 }
 return hashVal;
}

This is a hash function!

What is a hash function?
● Given an input of a particular type (e.g. string), returns a corresponding hash

value (usually a number).
○ The values returned by a hash function are called “hash values,” “hash codes,” or “hashes.”

What is a hash function?
● Given an input of a particular type (e.g. string), returns a corresponding hash

value (usually a number).
○ The values returned by a hash function are called “hash values,” “hash codes,” or “hashes.”

● Two important properties
1. If given the same input, the hash function must return the same output. (This is

also called a deterministic function.)

“Kylie J” 13172495

What is a hash function?
● Given an input of a particular type (e.g. string), returns a corresponding hash

value (usually a number).
○ The values returned by a hash function are called “hash values,” “hash codes,” or “hashes.”

● Two important properties
1. If given the same input, the hash function must return the same output. (This is

also called a deterministic function.)
2. Two different inputs will (usually) produce different outputs, even if the inputs are

very similar.

“Kylie J” 13172495
“Kylie

Jue” 127380

What is a hash function?
● Given an input of a particular type (e.g. string), returns a corresponding hash

value (usually a number).
○ The values returned by a hash function are called “hash values,” “hash codes,” or “hashes.”

● Two important properties
1. If given the same input, the hash function must return the same output. (This is

also called a deterministic function.)
2. Two different inputs will (usually) produce different outputs, even if the inputs are

very similar.

● Designing hash functions is beyond the scope of CS106B! But in the second
half of this lecture, we’ll discuss how to use them.

Announcements

Announcements
● Assignment 6 has been released and is due on Wednesday, August 11 at

11:59pm PDT. This is a hard deadline – there is no grace period, and no
submissions will be accepted after this time.
○ As a side note, the original handout noted that parter programming was allowed on this

assignment. This is not the case.

● The End-quarter Assessment will take place over 3 days from Friday, August
13 to Sunday, August 15.

● As listed on the course calendar, we will not be having class next Thursday
8/12. Wednesday 8/11 will be the last day of class.

Hashing and ADTs

ADT Big-O Matrix
● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

Can we do better???

Le
ve

ls
 o

f a
bs

tra
ct

io
n

What is the interface for the user?
(HashSets, HashMaps)

How is our data organized?
(hash table)

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Creating a hash table for data organization

Hash table slides courtesy of Keith
Schwarz

Creating a hash table for data organization
● Maintain a large number of small collections called buckets (think drawers).

○ Put together, the buckets form a hash table!

● Find a rule that lets us tell where each object should go (think knowing which
drawer is which).

● To find something, only look in the bucket assigned to it (think looking for
socks).

Creating a hash table for data organization
● Maintain a large number of small collections called buckets (think drawers).

○ Put together, the buckets form a hash table!

● Find a rule that lets us tell where each object should go (think knowing which
drawer is which).

● To find something, only look in the bucket assigned to it (think looking for
socks).

Use a hash
function!

set.add()

Our bucket rule:

bucket = hash(input) % numBuckets;
set.add()

Our bucket rule:

bucket = hash(urania) % numBuckets;
12206 6 set.add()

Our bucket rule:

bucket = hash(urania) % numBuckets;
12206 62 set.add()

Our bucket rule:

bucket = hash(input) % numBuckets;

Creating a hash table for data organization
● Maintain a large number of small collections called buckets (think drawers).

○ Put together, the buckets form a hash table!

● Find a rule that lets us tell where each object should go (think knowing which
drawer is which).

● To find something, only look in the bucket assigned to it (think looking for
socks).

Creating a hash table for data organization
● Maintain a large number of small collections called buckets (think drawers).

○ Put together, the buckets form a hash table!

● Find a rule that lets us tell where each object should go (think knowing which
drawer is which).

● To find something, only look in the bucket assigned to it (think looking for
socks).

We can use the same rule for
lookup!

Our bucket rule:

bucket = hash(input) % numBuckets;

Our bucket rule:

bucket = hash(urania) % numBuckets;
set.contains(urania)

Our bucket rule:

bucket = hash(urania) % numBuckets;
2 set.contains(urania)

Our bucket rule:

bucket = hash(urania) % numBuckets;
2 set.contains(urania)

Look in bucket 2 and
traverse until you find urania or
run out of elements.

Creating a hash table for data organization
● Maintain a large number of small collections called buckets (think drawers).

○ Put together, the buckets form a hash table!

● Find a rule that lets us tell where each object should go (think knowing which
drawer is which).

● To find something, only look in the bucket assigned to it (think looking for
socks).

How efficient is this?
● Each hash table operation:

○ Chooses a bucket and jumps there
○ Potentially scans everything in the bucket

● Claim: The efficiency of our hash table depends on how well-spread-out the
elements are.
○ If we want O(1) lookup operations, we want our buckets to have a size of

~1 element on average.

How efficient is this?
● Let’s suppose we have a “strong” hash function that distributes elements fairly

evenly.

How efficient is this?
● Let’s suppose we have a “strong” hash function that distributes elements fairly

evenly.
○ Recall our two hash function properties:

1. If given the same input, the hash function must return the same output. (This
is also called a deterministic function.)

2. Two different inputs will (usually) produce different outputs, even if the inputs
are very similar.

How efficient is this?
● Let’s suppose we have a “strong” hash function that distributes elements fairly

evenly.
○ Recall our two hash function properties:

1. If given the same input, the hash function must return the same output. (This
is also called a deterministic function.)

2. Any given input value will give a “random” output → this creates a relatively
equal distribution across buckets.

How efficient is this?
● Let’s suppose we have a “strong” hash function that distributes elements fairly

evenly.

● Imagine we have b buckets and n elements in our table.

How efficient is this?
● Let’s suppose we have a “strong” hash function that distributes elements fairly

evenly.

● Imagine we have b buckets and n elements in our table.

● On average, how many elements will be in a bucket?

How efficient is this?
● Let’s suppose we have a “strong” hash function that distributes elements fairly

evenly.

● Imagine we have b buckets and n elements in our table.

● On average, how many elements will be in a bucket?

n / b

How efficient is this?
● Let’s suppose we have a “strong” hash function that distributes elements fairly

evenly.

● Imagine we have b buckets and n elements in our table.

● On average, how many elements will be in a bucket?

n / b

● The expected cost of an insertion, deletion, or lookup is therefore:

O(1 + n / b)

Load factor
● We call 𝛼 = n / b our load factor.

● If 𝛼 gets too big, the hash table will be too slow.

● If 𝛼 gets too low, the hash table will waste too much space.

Load factor
● We call 𝛼 = n / b our load factor.

● If 𝛼 gets too big, the hash table will be too slow.

● If 𝛼 gets too low, the hash table will waste too much space.

● Idea: If 𝛼 gets too big, we need to resize our underlying buckets array and
rehash the values to new buckets in the larger array.
○ We double our number of buckets when we hit a particular threshold for our load

factor. (We’ll use the threshold of 𝛼 >= 2.)
○ Very similar to resizing our priority queue!

A note about collisions...
● In reality, our hash function will not distribute inputted elements exactly evenly

across all buckets.
○ This gives us “collisions”!

A note about collisions...
● In reality, our hash function will not distribute inputted elements exactly evenly

across all buckets.
○ This gives us “collisions”!

● A collision occurs when two or more elements map to the same bucket.

A note about collisions...
● In reality, our hash function will not distribute inputted elements exactly evenly

across all buckets.
○ This gives us “collisions”!

● A collision occurs when two or more elements map to the same bucket.

Collision!

A note about collisions...
● In reality, our hash function will not distribute inputted elements exactly evenly

across all buckets.
○ This gives us “collisions”!

● A collision occurs when two or more elements map to the same bucket.

● To handle collisions, we use a strategy called chaining, in which each bucket
stores a linked list of elements that point to one another.

Implementing a
HashSet

HashSet.h
class HashSet {
public:

HashSet();
~HashSet();
void add(int value);
void clear();
bool contains(int value) const;

private:
HashNode** elements; // an array of HashNode* (an array of pointers!)
int mysize;
int capacity;
int getIndexOf(int value) const;
void rehash();

};

struct HashNode {
int data;
HashNode* next;

};

HashSet.cpp
#include "HashSet.h"

// Initialize our member variables in the constructor
HashSet::HashSet() {
 capacity = 10;
 mysize = 0;
 elements = new HashNode*[capacity](); // all are initialized to nullptr using ()
}

// Private helper function for calculating the bucket of a given a value
int HashSet::getIndexOf(int value) const {
 return hash(value) % capacity;
}

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {

}

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
 if (!contains(value)) {

 }
}

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
 if (!contains(value)) {
 int bucket = getIndexOf(value);

 }
}

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
 if (!contains(value)) {
 int bucket = getIndexOf(value);
 // insert at the front of the list in that bucket
 elements[bucket] = new HashNode(value, elements[bucket]);

 }
}

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
 if (!contains(value)) {
 int bucket = getIndexOf(value);
 // insert at the front of the list in that bucket
 elements[bucket] = new HashNode(value, elements[bucket]);
 mysize++;
 }
}

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
 if (!contains(value)) {
 int bucket = getIndexOf(value);
 // insert at the front of the list in that bucket
 elements[bucket] = new HashNode(value, elements[bucket]);
 mysize++;
 }
 // We’ll add rehashing here later...
}

HashSet.cpp

// Check if a value is inside our set
bool HashSet::contains(int value) const {

}

HashSet.cpp

// Check if a value is inside our set
bool HashSet::contains(int value) const {
 HashNode* curr = elements[getIndexOf(value)];

}

HashSet.cpp

// Check if a value is inside our set
bool HashSet::contains(int value) const {
 HashNode* curr = elements[getIndexOf(value)];
 while (curr != nullptr) {

 }
 return false;
}

HashSet.cpp

// Check if a value is inside our set
bool HashSet::contains(int value) const {
 HashNode* curr = elements[getIndexOf(value)];
 while (curr != nullptr) {
 if (curr->data == value) {
 return true;
 }
 curr = curr->next;
 }
 return false;
}

HashSet.cpp
HashSet::~HashSet() {
 clear(); // Remove all elements
 delete[] elements; // Also delete the array itself
}

// Remove all elements in our set so all buckets in our array are nullptr
void HashSet::clear() {

}

HashSet.cpp
HashSet::~HashSet() {
 clear(); // Remove all elements
 delete[] elements; // Also delete the array itself
}

// Remove all elements in our set so all buckets in our array are nullptr
void HashSet::clear() {
 for (int i = 0; i < capacity; i++) {
 // free list in bucket i

 }
 mysize = 0;
}

HashSet.cpp
HashSet::~HashSet() {
 clear(); // Remove all elements
 delete[] elements; // Also delete the array itself
}

// Remove all elements in our set so all buckets in our array are nullptr
void HashSet::clear() {
 for (int i = 0; i < capacity; i++) {
 // free list in bucket i
 while (elements[i] != nullptr) {
 HashNode* curListNode = elements[i];
 elements[i] = elements[i]->next;
 delete curListNode;
 }
 }
 mysize = 0;
}

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
 if (!contains(value)) {
 int bucket = getIndexOf(value);
 // insert at the front of the list in that bucket
 elements[bucket] = new HashNode(value, elements[bucket]);
 mysize++;
 }
 // We’ll add rehashing here later...
}

HashSet.cpp
void HashSet::rehash() {
 HashNode** oldElements = elements;
 int oldCapacity = capacity;
 capacity *= 2;
 elements = new HashNode*[capacity]();
 for (int i = 0; i < oldCapacity; i++) {
 HashNode* curr = oldElements[i];
 while (curr != nullptr) { // iterate over old bucket
 HashNode* prev = curr;
 curr = curr->next; // don’t lose access to rest of old bucket
 int newBucket = getIndexOf(prev->data);
 prev->next = elements[newBucket]; // put prev node at front of new bucket
 elements[newBucket] = prev; // update new bucket pointer
 }
 }
 delete[] oldElements;
}

int HashSet::getIndexOf(int value) const {
 return hash(value) % capacity;
}

// Our hash function tells us what bucket in the array our elements should go in.

HashSet.cpp

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
 if (!contains(value)) {
 int bucket = getIndexOf(value);
 // insert at the front of the list in that bucket
 elements[bucket] = new HashNode(value, elements[bucket]);
 mysize++;
 }
 if (mysize / capacity >= 2) {
 rehash();
 }
}

HashSet takeaways
● When implementing HashSets or HashMaps, we use an array to store

pointers.
○ Each bucket in the array stores a pointer to a linked list in case of collisions.
○ To create a HashMap instead of a HashSet, your node struct would just include both a key and

a value (instead of just one field for data).

● Because we can just add new nodes to the front of the linked list at the
bucket indicated by its hash value, adding to a HashSet is O(1).

● Functions that require lookup are also constant time (i.e. O(1)) if the load
factor for our hash table is small!

Applications of Hashing

Hashing is used everywhere!
● In addition to creating hash tables, hash functions themselves are used in a

variety of different applications.

● Applications hash your passwords before storing them to obscure the actual
contents.

● Hashing is used in cryptography for secure (encrypted) communication and
maintaining data integrity.

○ For example, when you communicate over a WiFi network: Is this website secure? Is the this
document actually from the person it says it’s from? Did your message get tampered with
between when you sent it and when the recipient got it?

Hashzam!
(demo courtesy of Chris Piech)

How does it work?
● Attempt #1: Compare at all notes at every time stamp.

How does it work?
● Attempt #1: Compare at all notes at every time stamp.

● This would require storing all notes at every timestep, i.e. storing entire song
files!

How does it work?
● Instead, look at notes that appear close

to one another in time.

How does it work?
● Instead, look at notes that appear close

to one another in time.

Time

How does it work?
● Instead, look at notes that appear close

to one another in time.

Time

All notes at a
given

timestamp
(stacked by

pitch).

How does it work?
● Instead, look at notes that appear close

to one another in time.

How does it work?
● Instead, look at notes that appear close

to one another in time.

How does it work?
● Instead, look at notes that appear close to one another in time.

● Attempt #2: Store a frequency map of hashed values for each song.
○ For all notes within a certain timestep of one another throughout a given song,

store the hash(noteA, noteB, timeDelta).

How does it work?
● Instead, look at notes that appear close to one another in time.

● Attempt #2: Store a frequency map of hashed values for each song.
○ For all notes within a certain timestep of one another throughout a given song,

store the hash(noteA, noteB, timeDelta).

How does it work?
● Instead, look at notes that appear close to one another in time.

● Attempt #2: Store a frequency map of hashed values for each song.
○ For all notes within a certain timestep of one another throughout a given song,

store the hash(noteA, noteB, timeDelta).
○ This gives you a frequency map of the hashed values for the song (i.e. hash

values and their counts).

How does it work?
● Instead, look at notes that appear close to one another in time.

● Attempt #2: Store a frequency map of hashed values for each song.
○ For all notes within a certain timestep of one another throughout a given song,

store the hash(noteA, noteB, timeDelta).
○ This gives you a frequency map of the hashed values for the song (i.e. hash

values and their counts).
○ Compare the song’s frequency map to stored maps to find the closest match.

How does it work?
● Instead, look at notes that appear close to one another in time.

● Attempt #2: Store a frequency map of hashed values for each song.
○ For all notes within a certain timestep of one another throughout a given song,

store the hash(noteA, noteB, timeDelta).
○ This gives you a frequency map of the hashed values for the song (i.e. hash

values and their counts).
○ Compare the song’s frequency map to stored maps to find the closest match.

● You only have to store a database of frequency maps, which is more space
efficient and enables easier comparison between songs!

HashSet takeaways

● In addition to creating hash tables, hash functions themselves are used in a
variety of different applications.

● A good hash function reduces collisions and randomly distributes elements
depending on your use case.

● Operations on HashSets and HashMaps are O(1) -- much more efficient than
regular Sets and Maps.

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data
structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic

Core
Tools

User/client
Implementation

real-world
algorithms

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data
structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic

Core
Tools

User/client
Implementation

real-world
algorithms

FUN!

