Implementing an ADT

Having completed the diagnostic, what is an area
for growth that you identified?

(no need to put your answer in the chat)

Object-O Roadmap graphic courtesy of Nick Bowman & Kylie Jue

Road map Programming

C++ basics

. arrays
vectors + grids

dynamic memory

stacks + queues management

sets + maps linked data

real-world
algorithms

Life after
recur)S106B!

problem-solving

Diagnostic

Object-Oriented
Road map Programming

C++ basics

vectors + grids

stacks + queues

sets + maps

__structu B
real-world
Diagnostic algorithms

Life after

algorithmiC recur©8106B!

testing analysis problem-solving

How can we use

Tod ay,S fundamental data storage
question capabilities in C++ to

implement an ADT class?

. Review
Today's
topics

. Designing OurVector

. Visualizing OurVector
Operations

Implementing OurVector

Review

[arrays and dynamic memory management]

Acquiring and Using Storage Space

e Low-level storage space in C++ is acquired using

e Dynamic memory allocation normally has three steps:
o You can, at runtime, ask for extra storage space, which C++ will give to you.
o You can use that storage space however you'd like.
o You have to explicitly tell the language when you’re done using the memory.

Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called

e An array is a contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
o Contiguous means that each slot is located directly next to the others. There are no "gaps."
o All arrays have a specific type. Their type dictates what information can be held in each slot.
o Each slot has an "index" by which we can refer to it.

Index: 0 1 2 3 4 5 6

Dynamically Allocating Arrays

e First, declare a variable that will point at the newly-allocated array.

If the array elements have type T, the pointer will have type
© e.g.int*, string*, Vector<double>*

e Then, create a new array with the keyword and assign the
pointer to point to it.
e In two separate steps:

T* arr;
arr = new T[size];

e Or, in the same line:

T* arr = new T[size];

Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.

e Just like all other data types, pointers take up space in memory and can store
specific values.

e The meaning of these values is what's important.
, Which is like the specific coordinates of where a piece of
memory exists on the computer.

e Thus, they quite literally "point" to another location on your computer.

Properties of Dynamically Allocating Arrays

e The array you get from new|[] is . it can neither grow nor

shrink once it's created.
o The programmer’s version of “conservation of mass.”

e The array you get from new[] has Walking off

the beginning or end of an array triggers undefined behavior.

o Literally anything can happen: you read back garbage, you crash your program,
you let a hacker take over your computer, etc...

e The array you get from the new[] keyword comes from an area of
memory called the heap.

Memory from the Stack vs. Heap

Vector<string> varOnStack; string* arr = new string[numValues];

e So far, all variables we’ve created get e \We can now request memory from the
defined on the

e This is called static memory e Thisis called dynamic memory

: allocation
allocation
e \We have more control over variables on
e Variables on the stack are stored the heap
directly to the memory and access to
this memory is very fast e But this means that we also have to

handle the memory we’re using
e We don’t have to worry about carefully and properly clean it up when

e memory management e

Final Takeaways

e You can create arrays of a fixed size at runtime by using new[].

e (C++ arrays don’t know their lengths and have no bounds-checking. With great
power comes great responsibility.

e You are responsible for freeing any memory you explicitly allocate by calling
delete[]. Otherwise, your program will have memory leaks.

e Once you've deleted the memory pointed at by a pointer, you have a dangling
pointer and shouldn’t read or write from it.

How can we use fundamental
data storage capabillities In
C++ to implement an ADT

class?

Arrays vs. Vectors

e Notice that we access the elements of an array just like we access them in a
Vector, with square brackets.

° — they don't have any functions associated with
them.

e S0, you can't do this:

int* firstTen = new int[10];

int len = firstTen.length(); / ERROR! No functions!
firstTen.add(42); / ERROR! No functions!
firstTen[10] = 42; // ERRORY! Buffer overflow!

Arrays vs. Vectors

e Arrays are a very necessary tool to use if we want to actually store
information in a structured way in a program.

e \ectors are a great abstraction, providing helpful methods and a clean
interface that other programmers can use to solve interesting
problems.

e Idea: Let's use a dynamically allocated array as the underlying
method of data storage for a Vector class. Best of both worlds!

Designing OurVector

What is OurVector?

e Goal: Let's make our very own version of the Stanford C++ Vector that

we've been using all quarter long.
o It all will feel so much cooler when we've built it ourselves!

What is OurVector?

e Goal: Let's make our very own version of the Stanford C++ Vector that

we've been using all quarter long.
o It all will feel so much cooler when we've built it ourselves!

e Scope Constraints (aka "You've Gotta Start Somewhere"):

What is OurVector?

e Goal: Let's make our very own version of the Stanford C++ Vector that

we've been using all quarter long.
o It all will feel so much cooler when we've built it ourselves!

e Scope Constraints (aka "You've Gotta Start Somewhere"):
o We will only implement a subset of the functionality that the Stanford Vector provides.

What is OurVector?

e Goal: Let's make our very own version of the Stanford C++ Vector that

we've been using all quarter long.
o It all will feel so much cooler when we've built it ourselves!

e Scope Constraints (aka "You've Gotta Start Somewhere"):
o We will only implement a subset of the functionality that the Stanford Vector provides.
0 OurVector will and will not be configurable to store other types
m Generic, or "templated” classes that allow the client to specify the data type that is
stored, are possible in C++, but they are beyond the scope of this class.

What is OurVector?

e Goal: Let's make our very own version of the Stanford C++ Vector that

we've been using all quarter long.
o It all will feel so much cooler when we've built it ourselves!

e Scope Constraints (aka "You've Gotta Start Somewhere"):
o We will only implement a subset of the functionality that the Stanford Vector provides.
0 OurVector will and will not be configurable to store other types
m Generic, or "templated” classes that allow the client to specify the data type that is
stored, are possible in C++, but they are beyond the scope of this class.

o Atfirst, ourvVector will be limited to , but we will
lift this restriction by the end of class. For now, if we run out space we'll just throw an
error.

How do we design a class?
We must specify the 3 parts:

1. Member functions: What functions can you call on a variable of this
type?

2. Member variables: What subvariables make up this new variable
type?

3. Constructor: What happens when you make a new instance of this
type?

How do we design OurVector?

We must answer the following three questions:

1. Member functions: What public interface should OurVector support?
What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in OurVector?

3. Constructor: How are the member variables initialized when a new
instance of OurVector is created?

How do we design OurVector?

We must answer the following three questions:

1.

2. Member variables: What private information will we need to store in
order to keep track of the data stored in OurVector?

3. Constructor: How are the member variables initialized when a new
instance of OurVector is created?

OurVector Public Interface

class OurVector {
public:
OurVector () ;

void add(int wvalue) ;

void insert(int index, int wvalue);
int get(int index);

void remove (int index) ;

int size();

bool isEmpty () ;

private:
/* To be defined soon! */

};

OurVector Public Interface

class OurVector {
public:
OurVector () ;

void add(int wvalue) ;

void insert(int index, int wvalue);
int get(int index) ;

void remove (int index) ;

int size(); These methods should

bool isEmpty () ; all look very familiar
private: | — we've been using
|7 mo be defined soont ¥/ them all quarter long!

OurVector Public Interface

class OurVector {
public:
OurVector () ;

void add(int wvalue) ;

void insert(int index, int wvalue);
int get(int index);

void remove (int index) ;

int size();

bool isEmpty () ;

We'll use the get method fo
emulate the functionalily of the

private:
/* To be defined soon! */

}; Zi]operafoh

OurVector Public Interface

class OurVector {
public:
OurVector () ;

void add(int wvalue) ;

void insert(int index, int wvalue);
int get(int index);

void remove (int index) ;

int size();

bool isEmpty () ;

private: m Wh at

/* To be defined soon! */

b should go

ﬁ

How do we design OurVector?

We must answer the following three questions:

1. Member functions: What public interface should OurVector support?
What functions might a client want to call?

3. Constructor: How are the member variables initialized when a new
instance of OurVector is created?

Breakout Activity:
OurVector class design

OurVector Member Variables

OurVector Member Variables

¢ int* elements;

o A pointer to an array of integers, which will act as our underlying data storage
mechanism.

OurVector Member Variables

¢ int* elements;

o A pointer to an array of integers, which will act as our underlying data storage
mechanism.

e int allocatedCapacity;
o An integer that stores the size of the allocated elements array. Remember,
arrays don't have any conception/knowledge of their own size, so we must
manually track this!

OurVector Member Variables

¢ int* elements;

o A pointer to an array of integers, which will act as our underlying data storage
mechanism.

e int allocatedCapacity;
o An integer that stores the size of the allocated elements array. Remember,
arrays don't have any conception/knowledge of their own size, so we must
manually track this!

e int numItems;
o An integer that stores the number of elements currently stored in the vector.

OurVector Header File

class OurVector {
public:
OurVector() ;

void add(int wvalue) ;
void insert(int index, int wvalue);
int get(int index);
void remove (int index) ;
int size();
bool isEmpty() ;
private:
int* elements;
int allocatedCapacity;
int numItems;

};

How do we design OurVector?

We must answer the following three questions:

1. Member functions: What public interface should OurVector support?
What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in OurVector?

Review: Constructors

class OurVector {
public:
e A constructor is a special member OurVector () ;

function used to set up the class

o void add(int wvalue) ;
before it is used.

void insert(int index, int wvalue);
int get(int index) ;

. . void remove (int index) ;
e The constructor is automatically int size();

called when the object is created. bool isEmpty () ;

private:

int* elements;
e The constructor for a class named int allocatedCapacity;

ClassName has signature int numItems;
ClassName (args) ; bi

OurVector Constructor

e The constructor must initialize all the values of our member variables to be
things that initially make sense

e The allocatedCapacity should be set to some small integer
e The elements array should be allocated using the new[] keyword

e The numItems counter should be initialized to 0

OurVector Constructor

The constructor must initialize all the values of our member variables to be
things that initially make sense

The allocatedCapacity should be set to some small integer
The elements array should be allocated using the new[] keyword

The numItems counter should be initialized to O

When does
this memory
ever get

Destructors

e A destructor is a special member
function responsible for cleaning
up an object's memory.

e It's automatically called whenever
an object’s lifetime ends (for
example, if it's a local variable that
goes out of scope).

e The destructor for a class named
ClassName has signature
~ClassName () ;

Destructors

A destructor is a special member
function responsible for cleaning
up an object's memory.

It's automatically called whenever
an object’s lifetime ends (for
example, if it's a local variable that
goes out of scope).

The destructor for a class named
ClassName has signature
~ClassName () ;

class OurVector {
public:
OurVector () ;

void add(int wvalue) ;

void insert(int index,

int get(int index);

void remove (int index) ;

int size();

bool isEmpty () ;
private:

int* elements;

int allocatedCapacity;

int numItems;

int

};

value) ;

Destructors

A destructor is a special member
function responsible for cleaning
up an object's memory.

It's automatically called whenever
an object’s lifetime ends (for
example, if it's a local variable that
goes out of scope).

The destructor for a class named
ClassName has signature
~ClassName () ;

class OurVector {
public:
OurVector () ;
~OurVector () ;
void add(int wvalue) ;
void insert(int index,
int get(int index);
void remove (int index) ;
int size();
bool isEmpty () ;
private:
int* elements;
int allocatedCapacity;
int numItems;

int

};

value) ;

OurVector Destructor

e The destructor must take responsibility for freeing any allocated
memory currently in use by an instance of the class.

e In particular, this means calling the delete[] operator on the
elements array to officially give that memory back to the computer and
avoid any memory leaks.

e The other member variables (allocatedCapacity and numItems)
are both simple stack-allocated variables, so nothing special is
needed to clean them up.

Let's See theCode!
(Part 1)

Member Variables, Constructor, and Destructor

Summary

e Member variables define the key data storage components of a class
implementation.

e The constructor is the special method that gets called when a new instance of
a class is declared. In this method, we initialize all of our member variables to
the appropriate values, including allocating any necessary memory.

e The destructor is a special method that gets called when an instance of a
class goes out of scope and thus is destroyed. In this method, we most often
are responsible for freeing any dynamically allocated memory used by the
instance.

Announcements

Announcements

e Assignment 4 was released yesterday and will be due next Tuesday,
July 27 at 11:59pm PDT.

O This assignment might be the most difficult one to debug. We strongly recommend
going to LalR!

e The Assignment 4 YEAH session will be Wednesday at 11:30 am PT.
The Zoom info is posted on the course website.

i
J.’ :) 3
_ »é\“ﬂ’
) N4 <

Visualizing OurVector
Operations

Initialization via the Constructor

Initialization via the Constructor

// client code

OurVector vec;

Initialization via the Constructor

? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7
I // client code

elements 0x1234abef OurVector vec;

allocated

Capacity 8

numItems 0

/\/ew/y allocated arrays

initially ctore random f\
(or garbage) values

? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7
I // client code

elements 0x1234abef OurVector vec;

allocated

Capacity 8

numItems 0

The add () operation

e The add () operation is responsible for taking a specified element and
adding it to the first open spot at the end of the vector.

The add () operation

? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7
I // client code

elements 0x1234abef OurVector vec;

allocated

Capacity 8

numItems 0

The add () operation

o
=
N
w
1Y
(6]
(o)}
~

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;

allocated
Capacity 8

numItems 0

The add () operation

106 ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;

allocated
Capacity 8

numItems 1

The add () operation

106 ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7
|]

// client code
elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;
allocated
Capacity 8
numItems 1

The add () operation

106 42 ? ? ? ? ? ?
0 1 2 3 4 5 6 7
|]

// client code
elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;
allocated
Capacity 8
numItems 2

The add () operation

106 42 ? ? ? ? ? ?
0 1 2 3 4 5 6 7
|)

// client code
elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;
allocated vec.add(-3) ;
Capacity 8
numItems 2

The add () operation

106 42 -3 ? ? ? ? ?
0 1 2 3 4 5 6 7
|)

// client code
elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;
allocated vec.add(-3) ;
Capacity 8
numItems 3

The add () operation

106 42 -3 ? ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;
numItems 3

The add () operation

106 42 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;
numItems 4

The insert () and remove () operations

e The insert () operation is similar to add (), but allows the client to
specify which index they want the value to be inserted at.

e The remove () operation allows the client to specify an index at
which to remove an element, and then removes the value at that
index.

tracing OurVector operations

The remove () operation

106 42 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;
numItems 4

The remove () operation

106 42 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4

The remov operation

106 42 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;

numItems 4

The remove () operation

106 -3 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;

numItems 4

The remove () Oﬂon
3 27

106 -3 ? ? ? ?
0 1 2 3 4 5 6 7
I // client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;
allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;
vec.remove (1) ;
numItems 4

The remove () operation

106 -3 27 27 ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4

The remove () operation

106 -3 ? ? ? ?
0 1 4 5 6 7
I // client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;
allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;
vec.remove (1) ;
numItems 3

Arraye cannot grow or chrink, <o thic older
value is ctill technically there in the array.
We're just going to pretend that it isn't!

106 3 27 - 2 2 2 2

0 1 2

A
|

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 3

L‘-"\m"

Arraye cannot grow or chrink, co thic older
value is ctifll technically there in the array.
We're just going to pretend that it icnt!
106 -3 27 ? ? ? ? ?

0 1 2 3 4 5 6 7

A
|

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 3

The insert () operation

106 -3 27 ? ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 3 vec.insert (0, 198);

The insert () operation

198 106 -3 27 ? ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4 vec.insert (0, 198);

The get () / size () / isEmpty () operations

e The remaining operations that we have left to implement should be relatively
straightforward, given the member variables we have.

e The get () method can just return the array element at the specified index.

e The size () method can just return the value of the numItems member
variable.

e The isEmpty () method can compare numItems to O and return the
appropriate result.

Implementing OurVector

Let’'s see the Code!
(Part 2)

add (), remove (), insert (),
get (), size (), isEmpty ()

Summary

e Using an array for storing data involves shifting elements around — this kind of
code is ripe for off-by-one errors!

e \With good member variable member choices, most public methods are
relatively straightforward to implement.

e \We've now gained an appreciation for why insertion/removal on Vectors is an
"expensive" O(n) operation.

Running Out of Space

e QOur current implementation very quickly runs out of space to store
elements.

e \What should we do when this happens?

o Currently, we just throw an error. That doesn't seem quite right.
What if all data structures we used were limited to hold only 8
items?

o Instead, we need a way to our
internal data storage mechanism.

We are out of 4
donuts and you're

OUT OF LUCK. -~

7

There are
no more
donuts...

Running Out of Space

e QOur current implementation very quickly runs out of space to store
elements.

e \What should we do when this happens?

o Currently, we just throw an error. That doesn't seem quite right.
What if all data structures we used were limited to hold only 8
items?

o Instead, we need a way to our
internal data storage mechanism.

Dynamic Array Growth

A Day in the Life of a Hermit Crab

e Hermit crabs are interesting animals. They live in scavenged shells that they
find on the seafloor. Once in a shell, this is their lifestyle (with a bit of poetic
license).

A Day in the Life of a Hermit Crab

e Hermit crabs are interesting animals. They live in scavenged shells that they
find on the seafloor. Once in a shell, this is their lifestyle (with a bit of poetic

license):
o Grow until they have outgrown their current shell. Then, follow these 5 steps.
m Find another, larger shell.
Move all their stuff into the new shell.
Leave the old shell on the seafloor.
Update their address with the Hermit Crab Postal Service.
Make note of their new shell's spacious capacity by posting on Hermit Crab Instagram.

A Day in the Life of a Hermit Crab

e Hermit crabs are interesting animals. They live in scavenged shells that they
find on the seafloor. Once in a shell, this is their lifestyle (with a bit of poetic

license):
o Grow until they have outgrown their current shell. Then, follow these 5 steps.
m Find another, larger shell.
m Move all their stuff into the new shell.
m Leave the old shell on the seafloor.
m Update their address with the Hermit Crab Postal Service.
m Make note of their new shell's spacious capacity by posting on Hermit Crab Instagram.

e While this is purposefully a bit of a silly analogy, this process models almost
exactly what we need to do in order to dynamically resize our internal data
storage mechanism.

A Day in the Life of a Growable Array

e In essence, when we run out of space in our array, we want to allocate a new
array that is bigger than our old array so we can store the new data and keep
growing. These "growable arrays" follow a five-step expansion that mirrors the
hermit crab model (with poetic license).

A Day in the Life of a Growable Array

e In essence, when we run out of space in our array, we want to allocate a new
array that is bigger than our old array so we can store the new data and keep
growing. These "growable arrays" follow a five-step expansion that mirrors the
hermit crab model (with poetic license).

o Grow the array until we run out of space (how can we tell if we've run out of

space?)
m Create a new, larger array. Usually we choose to the current
size.

Copy the old array elements to the new array.

Delete (free) the old array.

Point the old array variable to the new array.

Update the associated capacity variable for the array.

106 42 -3 27

0 1 2 3
elements O0xl1234abef
allocated
Capacity 4
numItems 4

106 42 -3 27

0 1 2 3
A 1. Create a new, larger array. Usually we
choose to double the current size.
elements 0x1234abef
allocated
Capacity 4
numItems 4

? ? ? ?
0 1 2 3
106 42 -3 27
0 1 2 3
elements 0x1234abef
allocated
Capacity 4
numItems 4

1.

Create a new, larger array. Usually we
choose to double the current size.

0 1 2 3 4 5 6 7
106 42 -3 27
0 1 2 3
A 1. Create a new, larger array. Usually we
choose to double the current size.
elements O0x1234abef 2. Copy the old array elements to the new
array.
allocated
Capacity 4
numItems 4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7
106 42 -3 27
0 1 2 3
A 1. Create a new, larger array. Usually we
choose to double the current size.
elements O0x1234abef 2. Copy the old array elements to the new
array.
allocated
Capacity 4
numItems 4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7
106 42 -3 27
0 1 2 3
A 1. Create a new, larger array. Usually we
choose to double the current size.
elements O0x1234abef 2. Copy the old array elements to the new
array.
allocated 3. Delete (free) the old array.
Capacity 4
numItems 4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7
106 42 -3 27
0 1 2 3
A | 1. Create a new, larger array. Usually we
. choose to double the current size.
elements delete[] 2. Copy the old array elements to the new
array.
allocated 3. Delete (free) the old array.
Capacity 4
numItems 4

0
A | 1. Create a new, larger array. Usually we
; choose to double the current size.
elements delete[] 2. Copy the old array elements to the new
array.
allocated 3. Delete (free) the old array.
Capacity 4
numItems 4

106 42 -3 27
0 1 2 3
elements 0x1234abef
allocated
Capacity 4
numItems 4

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

106 42 -3 27
0 1 2 3
elements 0x1234abef
allocated
Capacity 4
numItems 4

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

Point the old array variable to the new
array.

106 42 -3 27
0 1 2 3
elements Oxabcd5678
allocated
Capacity 4
numItems 4

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

Point the old array variable to the new
array.

106 42 -3 27
0 1 2 3
elements Oxabcd5678
allocated
Capacity 4
numItems 4

Create a new, larger array. Usually we
choose to double the current size.

Copy the old array elements to the new
array.

Delete (free) the old array.

Point the old array variable to the new
array.

Update the associated capacity variable
for the array.

106 42 -3 27
0 1 2 3
elements Oxabcd5678
allocated
Capacity 8
numItems 4

Create a new, larger array. Usually we
choose to double the current size.

Copy the old array elements to the new
array.

Delete (free) the old array.

Point the old array variable to the new
array.

Update the associated capacity variable
for the array.

Summary

Implementing ADT Classes

e The first step of implementing an ADT class (as with any class) is answering
the three important questions regarding its public interface, private member
variables, and initialization procedures.

e Most ADT classes will need to store their data in an underlying array. The
organizational patterns of data in that array may vary, so it is important to

illustrate and visualize the contents and any operations that may be done.

e The paradigm of "growable" arrays allows for fast and flexible containers with
dynamic resizing capabilities that enable storage of large amounts of data.

expand ()

a private helper function

What's next?

Object-Oriented
Road map Programming

C++ basics

_ arrays
vectors + grids

dynamic memory

stacks + queues management

sets + maps

CamEAVIEWEER - —

real-world
algorithms

Life after
algorithmic recur@8S106B!

testing analysis problem-solving

Diagnostic

Priority Queues and Heaps

Ay 7’—] Dequeue
highest priority %

Enqueue

