
Introduction to Recursion
What’s been the most challenging part of

Assignment 2 for you so far?
(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

recursive
problem-solving

Core
Tools

Today’s
topics

1. Review

2. Defining recursion

3. Recursion + Stack Frames
(e.g. factorials)

4. Recursive Problem-Solving
(e.g. string reversal)

5. Time permitting,
introduction to Fractals

Review
Big O

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Doubling r increases area 4x
Tripling r increases area 9x

Doubling r increases area 4x
Tripling r increases area 9x

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Doubling r increases area 4x
Tripling r increases area 9x

Doubling r increases area 4x
Tripling r increases area 9x

This just says that these
quantities grow at the same
relative rates. It does not
say that they’re equal!

Efficiency Categorizations So Far

● Constant Time – O(1)
○ Super fast, this is the best we can hope for!
○ example: Euclid's Algorithm for Perfect Numbers

● Linear Time – O(n)
○ This is okay; we can live with this

● Quadratic Time – O(n2)
○ This can start to slow down really quickly
○ example: Exhaustive Search for Perfect Numbers

Input size

ru
nt

im
e

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)}

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – ???
○ .remove() – ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

What is recursion?

What is recursion?

Wikipedia: “Recursion occurs when a thing is defined in terms of itself.”

Today’s
question

How can we take
advantage of self-similarity
within a problem to solve it
more elegantly?

recursion
A problem-solving technique in which tasks are

completed by reducing them into repeated, smaller
tasks of the same form.

Definition

What is recursion?
● A powerful substitute for iteration (loops)

○ We’ll start off with seeing the difference between iterative vs. recursive
solutions

○ Later in the week we’ll see problems/tasks that can only be solved using
recursion

What is recursion?
● A powerful substitute for iteration (loops)

○ We’ll start off with seeing the difference between iterative vs. recursive
solutions

○ Later in the week we’ll see problems/tasks that can only be solved using
recursion

● Results in elegant, often shorter code when used well

What is recursion?
● A powerful substitute for iteration (loops)

○ We’ll start off with seeing the difference between iterative vs. recursive
solutions

○ Later in the week we’ll see problems/tasks that can only be solved using
recursion

● Results in elegant, often shorter code when used well

● Often applied to sorting and searching problems and can be used to express
patterns seen in nature

What is recursion?
● A powerful substitute for iteration (loops)

○ We’ll start off with seeing the difference between iterative vs. recursive
solutions

○ Later in the week we’ll see problems/tasks that can only be solved using
recursion

● Results in elegant, often shorter code when used well

● Often applied to sorting and searching problems and can be used to express
patterns seen in nature

● Will be part of many of our future assignments!

How many students
are in a lecture hall?
a [non-Zoom] analogy

How many students are in the lecture hall?

● Let’s suppose I want to find out how many people are at lecture today, but I
don’t want to walk around and count each person.

● I want to recruit your help, but I also want to minimize each individual’s amount
of work.

How many students are in the lecture hall?

● Let’s suppose I want to find out how many people are at lecture today, but I
don’t want to walk around and count each person.

● I want to recruit your help, but I also want to minimize each individual’s amount
of work.

We can solve this problem recursively!

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly

behind you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

?

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

?

?

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

?

?

?

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

?

?

?
?

??
??
?

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

0

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

1

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

2

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

...

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

57

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

58

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

59

How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people
are sitting directly behind you in your
“column”?

● When they respond with a value N,
respond (N + 1) to the person who
asked me.

● Can generalize to the entire lecture hall!

recursion
A problem-solving technique in which tasks are

completed by reducing them into repeated, smaller
tasks of the same form.

Definition

Two main cases (components) of recursion

● Base case
○ The simplest version(s) of your problem that all other cases reduce to
○ An occurrence that can be answered directly

Two main cases (components) of recursion

● Base case
○ The simplest version(s) of your problem that all other cases reduce to
○ An occurrence that can be answered directly

“If there is no one behind me, answer 0.”

Two main cases (components) of recursion

● Base case
○ The simplest version(s) of your problem that all other cases reduce to
○ An occurrence that can be answered directly

● Recursive case
○ The step at which you break down more complex versions of the task into smaller

occurrences
○ Cannot be answered directly
○ Take the “recursive leap of faith” and trust the smaller tasks will solve the problem

for you!

Two main cases (components) of recursion

● Base case
○ The simplest version(s) of your problem that all other cases reduce to
○ An occurrence that can be answered directly

● Recursive case
○ The step at which you break down more complex versions of the task into smaller

occurrences
○ Cannot be answered directly
○ Take the “recursive leap of faith” and trust the smaller tasks will solve the problem

for you!

“If someone is sitting behind me...”

Two main cases (components) of recursion

● Base case
○ The simplest version(s) of your problem that all other cases reduce to
○ An occurrence that can be answered directly

● Recursive case
○ The step at which you break down more complex versions of the task into smaller

occurrences
○ Cannot be answered directly
○ Take the “recursive leap of faith” and trust the smaller tasks will solve the problem

for you!

Factorial example

Factorials

● The number n factorial, denoted n!, is

n × (n – 1) × … × 3 × 2 × 1

Factorial slides based on an example by Keith Schwarz

Factorials

● The number n factorial, denoted n!, is

n × (n – 1) × … × 3 × 2 × 1

● For example,
○ 3! = 3 × 2 × 1 = 6.
○ 4! = 4 × 3 × 2 × 1 = 24.
○ 5! = 5 × 4 × 3 × 2 × 1 = 120.
○ 0! = 1. (by definition)

Factorials

● The number n factorial, denoted n!, is

n × (n – 1) × … × 3 × 2 × 1

● For example,
○ 3! = 3 × 2 × 1 = 6.
○ 4! = 4 × 3 × 2 × 1 = 24.
○ 5! = 5 × 4 × 3 × 2 × 1 = 120.
○ 0! = 1. (by definition)

● Factorials show up in unexpected places. We’ll see one later this quarter when
we talk about sorting algorithms.

Factorials

● The number n factorial, denoted n!, is

n × (n – 1) × … × 3 × 2 × 1

● For example,
○ 3! = 3 × 2 × 1 = 6.
○ 4! = 4 × 3 × 2 × 1 = 24.
○ 5! = 5 × 4 × 3 × 2 × 1 = 120.
○ 0! = 1. (by definition)

● Factorials show up in unexpected places. We’ll see one later this quarter when
we talk about sorting algorithms.

● Let’s implement a function to compute factorials!

Computing factorials

5! = 5 x 4 x 3 x 2 x 1

Computing factorials

5! = 5 x 4 x 3 x 2 x 1

Computing factorials

5! = 5 x 4 x 3 x 2 x 1

4!

Computing factorials

5! = 5 x 4!

Computing factorials

5! = 5 x 4!

Computing factorials

5! = 5 x 4!
4! = 4 x 3 x 2 x 1

Computing factorials

5! = 5 x 4!
4! = 4 x 3 x 2 x 1

Computing factorials

5! = 5 x 4!
4! = 4 x 3 x 2 x 1

3!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2 x 1

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2 x 1

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2 x 1

2!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! = 1 x 0!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! = 1 x 0!
0! = 1

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! = 1 x 0!
0! = 1

By definition!

Another view of factorials

Another view of factorials

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

This is a “stack frame.” One gets
created each time a function is called.

- The “stack” is where in your
computer’s memory the
information is stored.

- A “frame” stores all of the data
(variables) for that particular
function call.

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

When a function gets called, a new
stack frame gets created.

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

Every time we call factorial(),
we get a new copy of the local
variable n that’s independent
of all the previous copies because
it exists inside the new frame.

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
0in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
0in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
0in

t

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
0in

t

Stack frames go
away (get cleared
from memory) once
they return.

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1 1

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1 1

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1 1x

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
1in

t

1

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2 1

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2 1

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2 1x

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3 2

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3 2

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3 2x

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

6

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4 6

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4 6

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4 6x

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

24

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5 24

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5 24

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5 24x

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

120

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

n
120in

t

Summary of Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
3in

t

3

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
2in

t

2 1

int factorial(int n) {

 if (n == 0) {

 return 1;
 } else {

 return n * factorial(n-1);
 }
 }

d
d

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 0;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
4in

t

4 6x

Recursion in action

int main() {
 int n = factorial(5);
 cout << "5! = " << n << endl;
 return 0;
}

int factorial (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

n
5in

t

5 24x

 Recursive vs. Iterative

int factorial(int n) {

 if (n == 0) {

 return 1;
 } else {

 return n * factorial(n-1);
 }
 }

d
d

int factorialIterative(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++) {

 result = result * i;

 }

 return result;

}  

Announcements

Announcements

● Assignment 2 is due Tomorrow, 7/7 at 11:59pm PT. The grace period expires at
the same time on Friday. After that, we will not be accepting submissions.

● Assignment 3 will be released by the end of the day on Thursday and will be
due 8 days later on a Friday.

● The mid-quarter diagnostic will cover through the middle of next week (7/14 will
be the last day of content covered).
● We’ll have practice problems ready by this weekend, with more next

week.

Announcements II

● Here’s the LaIR schedule for the quarter:

● Recall that we have a special queue in the LaIR for conceptual questions. If you
want to review lecture material, LaIR is a great place to get extra practice with
concepts.

Reverse string example

How can we reverse a string?

Suppose we want to reverse strings like in the following examples:

“dog” → “god”

“stressed” → “desserts”

“recursion” → “noisrucer”

“level” → “level”

“a” → “a”

Approaching recursive problems

● Look for self-similarity.

● Try out an example.
○ Work through a simple example and then increase the complexity.
○ Think about what information needs to be “stored” at each step in the

recursive case (like the current value of n in each factorial stack frame).

● Ask yourself:
○ What is the base case? (What is the simplest case?)
○ What is the recursive case? (What pattern of self-similarity do you see?)

Discuss:
What are the base and
recursive cases?
(breakout rooms)

How can we reverse a string?

● Look for self-similarity: stressed → desserts

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● What’s the first step you would take to reverse “stressed”?

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● Take the s and put it at the end of the string.

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● Take the s and put it at the end of the string.
● Then reverse “tressed”

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● Take the s and put it at the end of the string.
● Then reverse “tressed”:

○ Take the t and put it at the end of the string.
○ Then reverse “ressed”

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● Take the s and put it at the end of the string.
● Then reverse “tressed”:

○ Take the t and put it at the end of the string.
○ Then reverse “ressed”:

■ Take the r and put it at the end of the string.
■ Then reverse “essed”

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● Take the s and put it at the end of the string.
● Then reverse “tressed”:

○ Take the t and put it at the end of the string.
○ Then reverse “ressed”:

■ Take the r and put it at the end of the string.
■ Then reverse “essed”:

● …
○ Take the d and put it at the end of the string.
○ Base case: reverse “” → get “”

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● Take the s and put it at the end of the string.
● Then reverse “tressed”:

○ Take the t and put it at the end of the string.
○ Then reverse “ressed”:

■ Take the r and put it at the end of the string.
■ Then reverse “essed”:

● …
○ Take the d and put it at the end of the string.
○ Base case: reverse “” → get “”

How can we
express the
recursive case?

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● Take the s and put it at the end of the string.
● Then reverse “tressed”:

○ Take the t and put it at the end of the string.
○ Then reverse “ressed”:

■ Take the r and put it at the end of the string.
■ Then reverse “essed”:

● …
○ Take the d and put it at the end of the string.
○ Base case: reverse “” → get “”

How can we
express the
recursive case?

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● reverse(“stressed”) = reverse(“tressed”) + ‘s’

○ Take the t and put it at the end of the string.
○ Then reverse “ressed”:

■ Take the r and put it at the end of the string.
■ Then reverse “essed”:

● …
○ Take the d and put it at the end of the string.
○ Base case: reverse “” → get “”

How can we
express the
recursive case?

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● reverse(“stressed”) = reverse(“tressed”) + ‘s’

○ Take the t and put it at the end of the string.
○ Then reverse “ressed”:

■ Take the r and put it at the end of the string.
■ Then reverse “essed”:

● …
○ Take the d and put it at the end of the string.
○ Base case: reverse “” → get “”

How can we
express the
recursive case?

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● reverse(“stressed”) = reverse(“tressed”) + ‘s’

○ reverse(“tressed”) = reverse(“ressed”) + ‘t’
■ Take the r and put it at the end of the string.
■ Then reverse “essed”:

● …
○ Take the d and put it at the end of the string.
○ Base case: reverse “” → get “”

How can we
express the
recursive case?

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● reverse(“stressed”) = reverse(“tressed”) + ‘s’

○ reverse(“tressed”) = reverse(“ressed”) + ‘t’
■ Take the r and put it at the end of the string.
■ Then reverse “essed”:

● …
○ Take the d and put it at the end of the string.
○ Base case: reverse “” → get “”

How can we
express the
recursive case?

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● reverse(“stressed”) = reverse(“tressed”) + ‘s’

○ reverse(“tressed”) = reverse(“ressed”) + ‘t’
■ reverse(“ressed”) = reverse(“essed”) + ‘r’

● …
○ Take the d and put it at the end of the string.
○ Base case: reverse “” → get “”

How can we
express the
recursive case?

How can we reverse a string?

● Look for self-similarity: stressed → desserts
● reverse(“stressed”) = reverse(“tressed”) + ‘s’

○ reverse(“tressed”) = reverse(“ressed”) + ‘t’
■ reverse(“ressed”) = reverse(“essed”) + ‘r’

● …
○ Base case: reverse(“”) = “”

How can we reverse a string?

● Recursive case: reverse(str) = reverse(str without first letter) + first letter of str
● Base case: reverse(“”) = “”

How can we reverse a string?

● Recursive case: reverse(str) = reverse(str without first letter) + first letter of str
● Base case: reverse(“”) = “”

Depending on how you thought of the problem, you may have also come up with:

● Recursive case: reverse(str) = last letter of str + reverse(str without last letter)
● Base case: reverse(“”) = “”

Let’s code it!
(live coding)

Summary

Summary

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

○ A recursive operation (function) is defined in terms of itself (i.e. it calls itself).

Summary

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.
○ Base case: Simplest form of the problem that has a direct answer.
○ Recursive case: The step where you break the problem into a smaller, self-similar task.

Summary

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.

● The solution will get built up as you come back up the call stack.
○ The base case will define the “base” of the solution you’re building up.
○ Each previous recursive call contributes a little bit to the final solution.
○ The initial call to your recursive function is what will return the completely constructed answer.

Summary

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.

● The solution will get built up as you come back up the call stack.

● When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

Summary

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.

● The solution will get built up as you come back up the call stack.

● When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

How can we use visual
representations to understand

recursion?

Self-Similarity

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-similarity shows up in many real-world
objects and phenomena, and is the key to
truly understanding their formation and
existence.

 Fractals

Fractals

● A fractal is any repeated, graphical pattern.

Fractals

● A fractal is any repeated, graphical pattern.

● A fractal is composed of repeated instances of the same shape or pattern,
arranged in a structured way.

Fractals

● A fractal is any repeated, graphical pattern.

● A fractal is composed of repeated instances of the same shape or pattern,
arranged in a structured way.

Fractals

● A fractal is any repeated, graphical pattern.

● A fractal is composed of repeated instances of the same shape or pattern,
arranged in a structured way.

Understanding Fractal
Structure

What differentiates the smaller tree from
the bigger one?

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-0 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-1 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-2 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-3 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-4 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-11 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-3 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-3 tree
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-3 tree
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

In Summary

In Summary

We drew this tree
recursively.

In Summary

Each recursive call just draws
one branch. The sum total of all
the recursive calls draws the
whole tree.

Revisiting the Towers
of Hanoi
[Recursive Part 2: Electric Boogaloo]

Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

To Do before tomorrow’s lecture

● Play Towers of Hanoi:
https://www.mathsisfun.com/games/towerofhanoi.html

● Look for and write down patterns in how to solve the problem as you
increase the number of disks. Try to get to at least 5 disks!

● Extra challenge (optional): How would you define this problem
recursively?
○ Don’t worry about data structures here. Assume we have a function moveDisk(X, Y)

that will handle moving a disk from the top of post X to the top of post Y.

https://www.mathsisfun.com/games/towerofhanoi.html

An Awesome Website!

http://recursivedrawing.com/

http://recursivedrawing.com/

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

recursive
problem-solving

Core
Tools

