Introduction to Recursion

What’s been the most challenging part of
Assignment 2 for you so far?
(put your answers the chat)

Object-Oriented
Roadmap Programming

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Diagnostic

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

Diagnostic

agoﬂm

testing analysis

Today'’s
topics

Review
Defining recursion

Recursion + Stack Frames
(e.qg. factorials)

Recursive Problem-Solving

(e.g. string reversal)

. Time permitting,

introduction to Fractals

Review
Big O

Big-O Notation

o is a way of quantifying the

e Example:
o A square of side length r has area O (r?).
o A circle of radius r has area O (r?).

Al 144 | | 9A

|

ﬂIG

V=

: 2 2
r . . r
3r 3r
Doué//‘ug r increases area Yx Doué//‘hg r increases area Yx

vipling v increaces area 9x [ripling r increaces area 9x

Big-O Notation

o is a way of quantifying the rate at which some quantity grows.
e Example: This just cays that these
o A square of side length r has area 0 (r?). } quantities qrow at the came
o A circle of radius r has area O (r?). relative ratec. It does not
cay that theyre equall

A 4A 9A

V=

r ; ,
2r | 2r

ﬂIG

3r ’ ar

Doubling r increasec area 4x

Doué//‘ug r increases area 4x

lripling v increaces area 9x

[vipling r increaces area 9x

Efficiency Categorizations So Far

e Constant Time — O(1)

o Super fast, this is the best we can hope for!
o example: Euclid's Algorithm for Perfect Numbers .

e Linear Time — O(n)
o This is okay; we can live with this

runtime

e Quadratic Time — O(n?)
o This can start to slow down really quickly
o example: Exhaustive Search for Perfect Numbers

Input size

ADT Big-O Matrix

e \ectors e Queues

_ _ e Sets
O .size() - O(1) O .size() - 0O(1) o .size() - O(1)
o .add() - 0O(1) o .peek () - O(1) S ‘isEmpty() - o)
o wv[i] - O(1) O .enqueue () - O(1) S .add() s
o .insert() - O(n) o .dequeue () - O(1))
. O .remove() - 27?7
0 .remove() - O(n) O .isEmpty () - O(1) o .contains () — 2?7
o .clear() - O(n) 0 traversal - O(n) ’
O traversal - O(n)} © traversal - O(n)
e Stacks M
e Grids o .size() - 0O(1) .O _aps o(1
o .numRows () /.numCols () o .peek() - O(1) . ::;:l}ily() _()0(1)
- 0(1) o .push() - O(1) S .m[key] C oon
o glil[j] - 0(1) o .pop() - 0O(1) © comtaing () - 299
o .inBounds () - O(1) o .isEmpty () - O(1) .
o traversal - O(n?) 0 traversal - O(n) © traversal - O(n)

What is recursion?

What is recursion?

Wikipedia: “Recursion occurs when a thing is defined in terms of itself.”

Go gle recursion X $ Q

Q All] Books [&) Images [) Videos [E) News { More Settings Tools

About 33,900,000 results (0.53 seconds)

Did you mean: recursion

| i
D0 WD WD e

" §

-
[

+ +

N WK »= e

0
] -
2
3+
S
N

w
o

= §§
55+ 34 = 89
0, 1, 89+ 55= 144

How can we take

TOday’S advantage of self-similarity
guestion

within a problem to solve it
more elegantly?

recursion
A problem-solving technique in which tasks are
completed by reducing them into repeated, smaller
tasks of the same form.

What is recursion?

e A powerful substitute for iteration (loops)

o We’ll start off with seeing the difference between iterative vs. recursive
solutions

o Later in the week we’ll see problems/tasks that can only be solved using
recursion

What is recursion?

e Results in elegant, often shorter code when used well

What is recursion?

e Often applied to sorting and searching problems and can be used to express
patterns seen in nature

What is recursion?

e A powerful substitute for iteration (loops)
o We’ll start off with seeing the difference between iterative vs. recursive
solutions
o Later in the week we’ll see problems/tasks that can only be solved using
recursion

e Results in elegant, often shorter code when used well

e Often applied to sorting and searching problems and can be used to express
patterns seen in nature

e Will be part of many of our future assignments!

How many students
are in a lecture hall?

a [non-Zoom] analogy

How many students are in the lecture hall?

e Let’s suppose | want to find out how many people are at lecture today, but |
don’t want to walk around and count each person.

e | want to recruit your help, but | also want to minimize each individual’s amount

of work.

How many students are in the lecture hall?

e Let’s suppose | want to find out how many people are at lecture today, but |
don’t want to walk around and count each person.

e | want to recruit your help, but | also want to minimize each individual’s amount
of work.

We can colve this problem recumive/y/

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.

o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.
m If someone is sitting behind me:
e Ask that person: How many people
are sitting directly behind you in your
“column™?
e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:

m If someone is sitting behind me:

e Ask that person: How many people
are sitting directly behind you in your
“column”?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column”?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.

o Student’s algorithm:
m Ifthere is no one behind me, answer O.
m If someone is sitting behind me:
e Ask that person: How many people
are sitting directly behind you in your
“column”?
e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.

o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.

o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.

o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:

m If someone is sitting behind me:

e Ask that person: How many people
are sitting directly behind you in your
“column”?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column”?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column”?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column”?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column”?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column”?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column”?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.
m If someone is sitting behind me:
e Ask that person: How many people
are sitting directly behind you in your
“column™?
e When they respond with a value N,
respond (N + 1) to the person who
asked me.

e Can generalize to the entire lecture halll

recursion
A problem-solving technique in which tasks are
completed by reducing them into repeated, smaller
tasks of the same form.

Two main cases (components) of recursion

e Base case
o The simplest version(s) of your problem that all other cases reduce to
o An occurrence that can be answered directly

Two main cases (components) of recursion

e Base case
o The simplest version(s) of your problem that all other cases reduce to
o An occurrence that can be answered directly

“TF there i no one behind me, answer 0.”

Two main cases (components) of recursion

® Recursive case
o The step at which you break down more complex versions of the task into smaller
occurrences
Cannot be answered directly
o Take the “recursive leap of faith” and trust the smaller tasks will solve the problem
for you!

Two main cases (components) of recursion

® Recursive case
o The step at which you break down more complex versions of the task into smaller
occurrences
Cannot be answered directly
o Take the “recursive leap of faith” and trust the smaller tasks will solve the problem
for you!

“IF someone is sitting behind me...”

Two main cases (components) of recursion

e Base case
o The simplest version(s) of your problem that all other cases reduce to
o An occurrence that can be answered directly

® Recursive case
o The step at which you break down more complex versions of the task into smaller
occurrences
Cannot be answered directly
o Take the “recursive leap of faith” and trust the smaller tasks will solve the problem
for you!

Factorial example

Factorials

e The number , denoted n!, is

Factorial slides based on an example by Keith Schware

Factorials

The number

, denoted

For example,

(@)

(@)
(@)
(@)

3!
4!
5!
0!

=4 x 3 x 2

3 x 2 x 1

6.

1 = 24.
5 x 4 x 3 x 2 x1=120.
1. (by definition)

X

S

Factorials

e The number , denoted n!, is

e For example,
o 3!' =3 x 2 x 1 6.
O 4! =4 x 3 x 2 x 1 = 24.
o 5! =5x4 x 3 x 2 x 1=120.
o 0! =1. (by definition)
e F[actorials show up in unexpected places. We’ll see one later this quarter when

we talk about sorting algorithms.

Factorials

e The number , denoted n!, is

e For example,
o 3!' =3 x 2 x1=26.
O 4! =4 x 3 x 2 x 1 = 24.
o 5! =5x4 x 3 x 2 x 1=120.
o 0! =1. (by definition)
e F[actorials show up in unexpected places. We’ll see one later this quarter when
we talk about sorting algorithms.

e Let’'simplement a function to compute factorials!

Computing factorials

51 =5 x4 x 3 x2x1

Computing factorials

5/ = 5 x

Computing factorials

5/ = 5 x

Computing factorials

5/ = 5 x

Computing factorials

5! = 5 x 4!

Computing factorials

5! = 5 x 4!
41

4 x 3 x 2 x1

Computing factorials

5! = 5 x 4!
41

4 x

Computing factorials

5! = 5 x 41
4 x

. J

41

Computing factorials

5! = 5 x 4!
41

4 x

Computing factorials

5! = 5 x 4!
41

4 x 3!

Computing factorials

5! = 5 x 4!
41 4 x 3!

3! =3 x 2 x1

Computing factorials

5! = 5 x 4!
4 x 3!
3 x

41
3!

Computing factorials

5! = 5 x 4!
41 4 x 3!
31 3 x

. J

N

Computing factorials

5! = 5 x 4!
4 x 3!
3 x

41
3!

Computing factorials

5! = 5 x 4!
41 4 x 3!

3! = 3 x 2!

Computing factorials

5! = 5 x 4!
4' = 4 x 3!
3! = 3 x 2!

21

2 x 1!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! =1 x 0!

Computing factorials

5! = 5 x 4!

4! = 4 x 3!

3! = 3 x 2!

2! = 2 x 1!

1! =1 x 0!
1

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1' =1 x 0! By definition!
0! 1 <

Another view of factorials

' 1 if n =20
n! =
n x (n—1)! otherwise

Another view of factorials

1 iftn =0

n x (n—1)! otherwise

n! =

int factorial (int n
if (n 0
return 1
else
return n factorial (n-1

Recursion in action

int main() {
int n = factorial (5);

cout << "5! = " K< n << endl;
return 0;

Recursion in action

int main() {
int n = factorial (5);

return 0;

cout << "5! = " K< n << endl;

Thisisa“ . One gets
created each time a function is called.
- The “stack” is where in your
computer’s memory the
information is stored.
- A “frame” stores all of the data
(variables) for that particular
function call.

Recursion in action

int main() {
int n = factorial (5);

cout << "5! = " K< n << endl;
return 0;

Recursion in action

int main() {

e .f:":’“lalo)(“{lt n) | " When a function gets called, a new
1 n == =
} return 1; el S stack frame gets created.
} else { n

return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n * factorial (n-1);

} 5

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n *| factorial (n-1) ;

} 5

Recursion in action

int main() {

int factorial (int n) {

T— 1Y
int factorial (int n) { —
return 1;
} else { n
} return n * factorial (n-1);
} Every time we call factorial(),
: we get a new copy of the local

variable n that’s independent
of all the previous copies because
it exists inside the new frame.

Recursion in action

int main() {

int factorial (int n) { ..E..
int factorial (int n) { —
return 1;
} else { n
} return n * factorial (n-1);
}

Recursion in action

int main() {

int factorial (int n) { ..E..
int factorial (int n) { —
return 1;
} else { n
} return n * factorial (n-1);
}

Recursion in action

int main() {

int factorial (int n) { ..E..
int factorial (int n) { —
return 1;
} else { n
} return n * factorial (n-1);
}

Recursion in action

int main() {

int factorial (int n) { ..E..
int factorial (int n) { —
return 1;
} else { n
} return| n '* factorial (n-1);
}

Recursion in action

int main() {

int factorial (int n) { ..E..
int factorial (int n) { —
return 1;
} else { n
} return| n '* factorial (n-1);
} 4
}

Recursion in action

int main() {

int factorial (int n) { ..E..
int factorial (int n) { —
return 1;
} else { n
} return n * factorial(n-1);
} 4
}

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return|/n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * [factorial (n-1)|;

} 3

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { n
} return n|* factorial(n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { n
} return n|* factorial(n-1);
} 2
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial(n-1);
} 2
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1) ;
}
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
}
1
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * [factorial (n-1);
}
1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
’ int factorial (int n) ({ N — W
} int factorial (int n) {
} if (n == 0) { ﬂl
return 1;
} } else { n
y return n * factorial(n-1);
}

}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E_.
int factorial (int n) { Py — T
’ int factorial (int n) ({ N — W
} int factorial (int n) {
} if (n == 0)]{ ﬁl
return 1;
} } else { n
y return n * factorial(n-1);
}

}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E_.
int factorial (int n) { Py — T
’ int factorial (int n) ({ N — W
} int factorial (int n) {
} if (n == 0) { ﬁl
return 1;
} } else { n
y return n * factorial(n-1);
}

}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) {
S — asioshn Stack frames go
in actoria int n
} T — T away (get cleared
int factorial (int n) { — from memory) once
} int factorial (int n) { theylfﬂurn.
} if (n == 0) { ﬁl /
return 1;
} } else { n
) return n * factorial(n-1);
}

}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * [factorial (n-1);
}
1
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * [factorial (n-1);
}
1 1
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
}
1 1
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
}
1 X 1
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { =
} int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
}
} 1

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial(n-1);
} 2
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial(n-1);
} 2 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial (n-1);
} 2 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial (n-1);
} 2 X 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial (n-1);
} 2
}

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * [factorial (n-1)|;

} 3

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * [factorial (n-1)|;

} 3 2

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * factorial (n-1)|;

} 3 2

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * factorial (n-1)|;

} 3 X 2

Recursion in action

int main() {

int factorial (int n) { ._E_.

int factorial (int n) {

T — TN
int factorial (int n) { —
n

return 1;
} } else {

} return n * factorial (n-1)|;

}
} 6

Recursion in action

int main() {

int factorial (int n) { ..E..
int factorial (int n) { —
return 1;
} else { n
} return n * factorial(n-1);
} 4
}

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) {
if (n == 0) {
return 1;

} else {

} a

6

T T
]
n

} return n * factorial(n-1);

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) {
if (n == 0) {
return 1;

} else {

} a

6

T T
]
n

} return n * factorial(n-1);

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { —
return 1;
} else { n
} return n * factorial(n-1);
} 4 X 6
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { —
return 1;
} else { n
} return n * factorial(n-1);
} 24
}

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n *| factorial (n-1) ;

} 5

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n *| factorial (n-1) ;

} 5 24

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n * factorial (n-1);

} 5 24

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n * factorial (n-1);

} 5 x 24

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n * factorial (n-1);

} 120

Recursion in action

int main() {
int n = factorial (5);

cout << "5! = " K< n << endl;
return 0;

Recursion in action

int main() {

int n = factorial (5); '
cout << "5! = " << n << endl;
n

return 0;

Summary of Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial(n-1);
} 2 1
}

int factorial(int n) {

if(n==0){
return 1;
} else {
return n * factorial(n-1);

}
}

Recursion in action

int main() {

int factorial (int n) { ‘E..
int factorial (int n) { —
return 1;
} else { n
} return n * factorial(n-1);
} 4 X 6
}

Recursion in action

int main() {

int factorial (int n) { —
n

} return 1;
} else {
return n * factorial (n-1);

} 5 x 24

Recursive vs. lterative

int factorial(int n) { int factoriallterative(int n) {

if(n==0){ Int result = 1;

return 1; for (inti=1;i<=n;i++) {
} else { | result = result * i;
return n * factorial(n-1);)
} return result:

) }

Announcements

Announcements

e Assignment 2 is due Tomorrow, 7/7 at 11:59pm PT. The grace period expires at
the same time on Friday. After that, we will not be accepting submissions.

e Assignment 3 will be released by the end of the day on Thursday and will be
due 8 days later on a Friday.

e The mid-quarter diagnostic will cover through the middle of next week (7/14 will
be the last day of content covered).

e We’'ll have practice problems ready by this weekend, with more next
week.

Announcements |l

e Here’s the LalR schedule for the quarter:

Day Time
Monday 5-7pm Pacific
Tuesday 7-9pm Pacific

Wednesday 5-7Tpm Pacific
Thursday 7-9pm Pacific

e Recall that we have a special queue in the LalR for conceptual questions. If you
want to review lecture material, LalR is a great place to get extra practice with
concepts.

Reverse string example

How can we reverse a string?

Suppose we want to reverse strings like in the following examples:
“dog” » “god”
“stressed” =+ “desserts”
“recursion” = “noisrucer”
“level” » “level”

[13 ” [13 ”

a = a

Approaching recursive problems

e ook for self-similarity.

e Try out an example.
o Work through a simple example and then increase the complexity.
o Think about what information needs to be “stored” at each step in the
recursive case (like the current value of n in each factorial stack frame).

e Ask yourself:

o What is the base case? (What is the simplest case?)
o What is the recursive case? (What pattern of self-similarity do you see?)

Discuss:
What are the base and
recursive cases?

(breakout rooms)

How can we reverse a string?

e Look for self-similarity: stressed » desserts

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e What’s the first step you would take to reverse “stressed”?

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.
e Then reverse “tressed”

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.
e Then reverse “tressed”:
o Take the t and put it at the end of the string.
o Then reverse “ressed”

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.
e Then reverse “tressed”:
o Take the t and put it at the end of the string.
o Then reverse “ressed”:
m Take therand put it at the end of the string.
m Thenreverse “essed”

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.
e Then reverse “tressed”:
o Take the t and put it at the end of the string.
o Then reverse “ressed”:
m Take ther and putit at the end of the string.
m Thenreverse “essed”:

o Take the d and put it at the end of the string.

(1%}

o . reverse = get

(1%

How can we reverse a string?

e Look for self-similarity: stressed » desserts How can we
e Take the s and put it at the end of the string. express the
e Then reverse “tressed”: recurcive cace?

o Take the t and put it at the end of the string.

o Then reverse “ressed”:
m Take therand put it at the end of the string.
m Thenreverse “essed”:

o Take the d and put it at the end of the string.

(1%}

o . reverse = get

(1%

How can we reverse a string?

e Look for self-similarity: stressed » desserts How can we
exprecs the
recursive cace?

o Take the t and put it at the end of the string.
o Then reverse “ressed”:
m Take therand put it at the end of the string.
m Thenreverse “essed”:
o ..
o Take the d and put it at the end of the string.
o Base case: reverse 7 » get

(1%

How can we reverse a string?

e Look for self-similarity: stressed » desserts How can we
exprecs the
o Take the t and put it at the end of the string. recurcive cage?

o Then reverse “ressed”:
m Take ther and put it at the end of the string.
m Thenreverse “essed”:
o ..
o Take the d and put it at the end of the string.
0 Base case: reverse “7 » get

(1%}

How can we reverse a string?

e Look for self-similarity: stressed » desserts How can we

(13 ” [13 ?” (PG) e)(k S' Ae
e reverse(“stressed”) = reverse(“tressed”) + ‘s press 1

recursive cace .7

m Take ther and put it at the end of the string.
m Thenreverse “essed”:
o ..
o Take the d and put it at the end of the string.
0 Base case: reverse “7 » get

(1%}

How can we reverse a string?

e Look for self-similarity: stressed » desserts How can we
® reverse(“stressed”) = reverse(“tressed”) +°s’ express the
recurcive cace?
m Take therand put it at the end of the string.
m Thenreverse “essed”:
o ..
o Take the d and put it at the end of the string.
o Base case: reverse “7 » get

(1%

How can we reverse a string? How can we
exprecs the

e Look for self-similarity: stressed » desserts recurcive cace?
e reverse(“stressed”) = reverse(“tressed”) + ‘s’
o reverse(“tressed”) = reverse(“ressed”) + '

o Take the d and put it at the end of the string.
o Base case: reverse “7 » get

(1%

How can we reverse a string?

e Look for self-similarity: stressed » desserts How can we

e reverse(“stressed”) = reverse(“tressed”) + ‘s’
o reverse(“tressed”) = reverse(“ressed”) + '

exprecs the

recursive cace .7

o Take the d and put it at the end of the string.
= get

({1%4) (1%}

o Base case: reverse

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e reverse(“stressed”) = reverse(“tressed”) + ‘s’
o reverse(“tressed”) = reverse(“ressed”) + '

m reverse(“ressed”) = reverse(“essed”) + °r’
o

({132

o Base case: reverse(”) =

How can we reverse a string?

® Recursive case: reverse(str) = reverse(str without first letter) + first letter of str
e Base case: reverse(*’) =

({132

How can we reverse a string?

® Recursive case: reverse(str) = reverse(str without first letter) + first letter of str
e Base case: reverse("”) ="

Depending on how you thought of the problem, you may have also come up with:

e Recursive case: reverse(str) = last letter of str + reverse(str without last letter)
e Base case: reverse("”) ="

Let’s code it!

(live coding)

Summary

Summary

e Recursion is a problem-solving technique in which tasks are completed by

reducing them into repeated, smaller tasks of the same form.
o Arecursive operation (function) is defined in terms of itself (i.e. it calls itself).

Summary

e Recursion has two main parts: the base case and the recursive case.

o Base case: Simplest form of the problem that has a direct answer.
o Recursive case: The step where you break the problem into a smaller, self-similar task.

Summary

e The solution will get built up as you come back up the call stack.

o The base case will define the “base” of the solution you’re building up.
o Each previous recursive call contributes a little bit to the final solution.
o The initial call to your recursive function is what will return the completely constructed answer.

Summary

e When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

Summary

e Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

e Recursion has two main parts: the base case and the recursive case.
e The solution will get built up as you come back up the call stack.

e When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

How can we use visual
representations to understand
recursion?

Self-Similarity

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena

involves identifying

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains
a smaller copy of itself.

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains &5
a smaller copy of itself.

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains
a smaller copy of itself.

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains
a smaller copy of itself.

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains -J/"
a smaller copy of itself. \

Self-cimifarity chowe up in many real-world
obfects and phenomena, and is the key to
truly understanding their formation and

existence.

Fractals

Fractals

o A is any repeated, graphical pattern.

Fractals

o A is any repeated, graphical pattern.

e A fractal is composed of :

arranged in a structured way.

Fractals

o A is any repeated, graphical pattern.

e A fractal is composed of :

arranged in a structured way.

Fractals

o A is any repeated, graphical pattern.

e A fractal is composed of :

arranged in a structured way.

Understanding Fractal
Structure

What differentiates the smaller tree from

the bigger one?

What differentiates the smaller tree from
the bigger one?
1. It's at a different

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

&7

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

4. It has a different

{_/\ i

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different . the overall structure.

An order-0 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2. It has a different) called the , which
3. It has a different) indicates the complexity of
4. It has a different) the overall structure.

An order-1 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

An order-2 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

An order-3 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

An order-4 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

What differentiates the smaller tree from

the bigger one?

1.

2.
3.
4.

It's at a different
It has a different
It has a different
It has a different

Fractals and self-similar
structures are often defined
in terms of some parameter
called the , which
indicates the complexity of
the overall structure.

An order-3 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

An order-3 tree

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order- (n-1) trees starting
at the end of that line.

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

4. It has a different

Fractals and self-similar
structures are often defined
in terms of some parameter
called the , which
indicates the complexity of
the overall structure.

An order-3 tree

An order-0 tree is nothing at all.
An order-n tree is a line with two

smaller order- (n-1) trees starting \’ =~
at the end of that line.

What differentiates the smaller tree from

the bigger one?

1.

2.
3.
4.

It's at a different
It has a different
It has a different
It has a different

P
1\

v T
\

-~

7 -

/ \

Fractals and self-similar
structures are often defined
in terms of some parameter
called the , which
indicates the complexity of
the overall structure.

We drew thic
recurcively

Each recursive call just draws
one branch. The cum total of all

the recursive caflls draws the

whole tree.

Revisiting the Towers
of Hanoi

[Recursive Part 2: Electric Boogaloo]

Pseudocode for 3 disks
3 DISKS
| (1 | I |
A B C A B C
2 (3) (@
i N
A B C -T_+ C A +_+-
(5) (6))]
A B C A B C A B C
(1) Move disk 1to destination (5) Move disk 1to source
(2) Move disk 2 to auxiliary (6) Move disk 2 to destination
(3) Move disk 1to auxiliary (7) Move disk 1to destination
(

4) Move disk 3 to destination

To Do before tomorrow’s lecture

e Play Towers of Hanoi:

e Look for and write down patterns in how to solve the problem as you
increase the number of disks. Try to get to at least 5 disks!

e Extra challenge (optional): How would you define this problem

recursively?

o Don’t worry about data structures here. Assume we have a function moveDisk (X, Y)
that will handle moving a disk from the top of post X to the top of post Y.

https://www.mathsisfun.com/games/towerofhanoi.html

An Awesome Website!

http://recursivedrawing.com/

http://recursivedrawing.com/

What’s next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

Diagnostic

agoﬂm

testing analysis

Move this tower.. .Yo this spindle,

