
Introduction to Recursion
What’s been the most challenging part of 

Assignment 2 for you so far?
(put your answers the chat)
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Today’s 
topics

1. Review

2. Defining recursion

3. Recursion + Stack Frames 
(e.g. factorials)

4. Recursive Problem-Solving 
(e.g. string reversal)

5. Time permitting, 
introduction to Fractals



Review
Big O



Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Doubling r increases area 4x
Tripling r increases area 9x
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Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Doubling r increases area 4x
Tripling r increases area 9x

Doubling r increases area 4x
Tripling r increases area 9x

This just says that these
quantities grow at the same
relative rates. It does not
say that they’re equal!



Efficiency Categorizations So Far

● Constant Time – O(1)
○ Super fast, this is the best we can hope for!
○ example: Euclid's Algorithm for Perfect Numbers

● Linear Time – O(n)
○ This is okay; we can live with this

● Quadratic Time – O(n2)
○ This can start to slow down really quickly
○ example: Exhaustive Search for Perfect Numbers
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ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○  v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)}

● Grids
○ .numRows()/.numCols() 
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – ???
○ .remove() – ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○  m[key] – ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)



What is recursion?





What is recursion?

Wikipedia: “Recursion occurs when a thing is defined in terms of itself.”











Today’s 
question

How can we take 
advantage of self-similarity 
within a problem to solve it 
more elegantly?



recursion
A problem-solving technique in which tasks are 

completed by reducing them into repeated, smaller 
tasks of the same form.

Definition
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What is recursion?
● A powerful substitute for iteration (loops)

○ We’ll start off with seeing the difference between iterative vs. recursive 
solutions

○ Later in the week we’ll see problems/tasks that can only be solved using 
recursion

● Results in elegant, often shorter code when used well

● Often applied to sorting and searching problems and can be used to express 
patterns seen in nature

● Will be part of many of our future assignments!



How many students 
are in a lecture hall?
a [non-Zoom] analogy



How many students are in the lecture hall?

● Let’s suppose I want to find out how many people are at lecture today, but I 
don’t want to walk around and count each person.

● I want to recruit your help, but I also want to minimize each individual’s amount 
of work.
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● Let’s suppose I want to find out how many people are at lecture today, but I 
don’t want to walk around and count each person.

● I want to recruit your help, but I also want to minimize each individual’s amount 
of work.

We can solve this problem recursively!
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How many students are in the lecture hall?

● We’ll focus on solving the problem for single “column” of students.
○ I go to the first person in the front row and ask: “How many people are sitting directly behind 

you in your ‘column’?”
○ Student’s algorithm:

■ If there is no one behind me, answer 0.
■ If someone is sitting behind me:

● Ask that person: How many people 
are sitting directly behind you in your 
“column”?

● When they respond with a value N, 
respond (N + 1) to the person who 
asked me.

● Can generalize to the entire lecture hall!
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● Base case
○ The simplest version(s) of your problem that all other cases reduce to
○ An occurrence that can be answered directly
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○ The step at which you break down more complex versions of the task into smaller 
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● The number n factorial, denoted n!, is

n × (n – 1) × … × 3 × 2 × 1

Factorial slides based on an example by Keith Schwarz
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Factorials

● The number n factorial, denoted n!, is

n × (n – 1) × … × 3 × 2 × 1

● For example, 
○ 3! = 3 × 2 × 1 = 6.
○ 4! = 4 × 3 × 2 × 1 = 24.
○ 5! = 5 × 4 × 3 × 2 × 1 = 120.
○ 0! = 1. (by definition)

● Factorials show up in unexpected places. We’ll see one later this quarter when 
we talk about sorting algorithms.

● Let’s implement a function to compute factorials!
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Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! = 1 x 0!
0! = 1

By definition!
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Another view of factorials

int factorial (int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n-1);
    }
}
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int main() {
    int n = factorial(5);
    cout << "5! = " << n << endl;
    return 0;
}

This is a “stack frame.” One gets 
created each time a function is called.

- The “stack” is where in your 
computer’s memory the 
information is stored.

- A “frame” stores all of the data 
(variables) for that particular 
function call.
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When a function gets called, a new 
stack frame gets created.
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}

int factorial (int n) {
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int factorial (int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n-1);
    }
}

n
4in

t

Every time we call factorial(),
we get a new copy of the local
variable n that’s independent
of all the previous copies because 
it exists inside the new frame.
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   Recursive vs. Iterative



int factorial(int n) {
 

     if (n == 0) { 

          return 1;
     } else { 

          return n * factorial(n-1);
     }
 }

d
d

int factorialIterative(int n) {
   int result = 1;
         for (int i = 1; i <= n; i++) { 

                      result = result * i; 

          } 

     return result; 

}  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Announcements

● Assignment 2 is due Tomorrow, 7/7 at 11:59pm PT. The grace period expires at 
the same time on Friday. After that, we will not be accepting submissions.

● Assignment 3 will be released by the end of the day on Thursday and will be 
due 8 days later on a Friday.

● The mid-quarter diagnostic will cover through the middle of next week (7/14 will 
be the last day of content covered).
● We’ll have practice problems ready by this weekend, with more next 

week.



Announcements II

● Here’s the LaIR schedule for the quarter:

● Recall that we have a special queue in the LaIR for conceptual questions. If you 
want to review lecture material, LaIR is a great place to get extra practice with 
concepts.



Reverse string example





How can we reverse a string?

Suppose we want to reverse strings like in the following examples:

“dog” → “god”

“stressed” → “desserts”

“recursion” → “noisrucer”

“level” → “level”

“a” → “a”



Approaching recursive problems

● Look for self-similarity.

● Try out an example.
○ Work through a simple example and then increase the complexity.
○ Think about what information needs to be “stored” at each step in the 

recursive case (like the current value of n in each factorial stack frame).

● Ask yourself:
○ What is the base case? (What is the simplest case?)
○ What is the recursive case? (What pattern of self-similarity do you see?)



Discuss:
What are the base and 
recursive cases?
(breakout rooms)
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How can we reverse a string?

● Look for self-similarity: stressed → desserts
● reverse(“stressed”) = reverse(“tressed”) + ‘s’

○ reverse(“tressed”) = reverse(“ressed”) + ‘t’
■ reverse(“ressed”) = reverse(“essed”) + ‘r’

● …
○ Base case: reverse(“”) = “”
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How can we reverse a string?

● Recursive case: reverse(str) = reverse(str without first letter) + first letter of str
● Base case: reverse(“”) = “”

Depending on how you thought of the problem, you may have also come up with:

● Recursive case: reverse(str) = last letter of str + reverse(str without last letter)
● Base case: reverse(“”) = “”



Let’s code it!
(live coding)



Summary



Summary

● Recursion is a problem-solving technique in which tasks are completed by 
reducing them into repeated, smaller tasks of the same form.

○ A recursive operation (function) is defined in terms of itself (i.e. it calls itself).



Summary

● Recursion is a problem-solving technique in which tasks are completed by 
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.
○ Base case: Simplest form of the problem that has a direct answer.
○ Recursive case: The step where you break the problem into a smaller, self-similar task.



Summary

● Recursion is a problem-solving technique in which tasks are completed by 
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.

● The solution will get built up as you come back up the call stack.
○ The base case will define the “base” of the solution you’re building up.
○ Each previous recursive call contributes a little bit to the final solution.
○ The initial call to your recursive function is what will return the completely constructed answer.
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Summary

● Recursion is a problem-solving technique in which tasks are completed by 
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.

● The solution will get built up as you come back up the call stack.

● When solving problems recursively, look for self-similarity and think about 
what information is getting stored in each stack frame.



How can we use visual 
representations to understand 

recursion?
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Self-Similarity

● Solving problems recursively and 
analyzing recursive phenomena 
involves identifying self-similarity 

● An object is self-similar if it contains 
a smaller copy of itself.



Self-similarity shows up in many real-world 
objects and phenomena, and is the key to 
truly understanding their formation and 
existence.
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In Summary

Each recursive call just draws 
one branch. The sum total of all 
the recursive calls draws the 
whole tree.



Revisiting the Towers 
of Hanoi
[Recursive Part 2: Electric Boogaloo]



Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination



To Do before tomorrow’s lecture

● Play Towers of Hanoi: 
https://www.mathsisfun.com/games/towerofhanoi.html

● Look for and write down patterns in how to solve the problem as you 
increase the number of disks.  Try to get to at least 5 disks!

● Extra challenge (optional): How would you define this problem 
recursively?
○ Don’t worry about data structures here.  Assume we have a function moveDisk(X, Y) 

that will handle moving a disk from the top of post X to the top of post Y.

https://www.mathsisfun.com/games/towerofhanoi.html


An Awesome Website!

http://recursivedrawing.com/

http://recursivedrawing.com/


What’s next?



vectors + grids

    stacks + queues

    sets + maps

Object-Oriented 
Programming

      arrays

      dynamic memory    
        management

linked data structures

algorithmic 
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world 
algorithms

User/client
Implementation

recursive 
problem-solving

Core 
Tools




