
Linked Lists
For something very important to you,                  

would you rather rely on your own memory            
or computer memory?

(put your answers in the chat)
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Today’s 
question

How can we use pointers 
to organize non-contiguous 
memory on the heap?



Today’s 
topics

1. Review

2. What is a linked list? 

3. How do we manipulate 
linked lists?



Review
[memory and pointers]



Levels of abstraction
Abstract Data 

Structures

Data Organization 
Strategies

Fundamental C++ 
Data Storage

Computer 
Hardware



How is computer memory organized?

0xfca0b000
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Pointers and Memory
● Every variable you create has an address in memory on your computer (either 

on the stack or the heap).

● A pointer is just a type of variable that stores a memory address!
○ You specify the type of the variable that it points to so that C++ knows 

how much space the value its pointing to is taking up (e.g. string* or int* 
or Vector*).

○ But remember that pointers and what they point to (e.g. string vs. 
string*) are two completely different data types!
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Pointers and Memory
● Every variable you create has an address in memory on your computer (either 

on the stack or the heap)

● A pointer is just a type of variable that stores a memory address!

● When you dynamically allocate variables on the heap, you must use the 
keyword new (or new[] for arrays) and must store the address in a pointer to 
keep track of it.
○ E.g. int* number = new int; Dynamically allocated 

variables 
are the only reason we’ll use 
pointers in this class!



Pointers and Memory
● Every variable you create has an address in memory on your computer (either 

on the stack or the heap)

● A pointer is just a type of variable that stores a memory address!

● When you dynamically allocate variables on the heap, you must use the 
keyword new (or new[] for arrays) and must store the address in a pointer to 
keep track of it.

● To get the value located at the memory address stored in a pointer, you must 
dereference the pointer using the * operator (e.g. cout << *number << endl;).



Pointer Fun with Binky:
a Stanford CS106 Throwback

● Nick Parlante has been teaching 
intro CS classes at Stanford for 
many years.

● In 1999, he created a stop-motion 
claymation video starring a 
character named Binky that has 
been a staple of explaining 
pointers in intro CS classes at 
Stanford ever since.



http://www.youtube.com/watch?v=B7lVHq-cgeU


Today: Using pointers 
in practice



How can we use pointers to organize 
non-contiguous memory on the heap?

Today: Using pointers 
in practice



Today: Using pointers 
in practice
How can we use pointers to organize 
non-contiguous memory on the heap?

Not arrays!
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How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)
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Computer 
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Our focus 
for today!
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What is a linked list?
● A linked list is a chain of nodes.

● Each node contains two pieces of information:
○ Some piece of data that is stored in the sequence
○ A link to the next node in the list

● We can traverse the list by starting at the first node and repeatedly following 
its link.
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A linked list!
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Why use linked lists?
● More flexible than arrays!

○ Since they’re not contiguous, they’re easier to rearrange.

● We can efficiently splice new elements into the list or remove existing 
elements anywhere in the list. (We’ll see how shortly!)

● We never have to do a massive copy step.

● Linked lists have many tradeoffs, and are not often the best data structure!



Linked lists in C++



The Node struct

struct Node {
    string data;
    Node* next;
}
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The Node struct

struct Node {
    string data;
    Node* next;
}

● The structure is defined recursively! (both the Node and the linked list itself)

● The compiler can handle the fact that in the definition of the Node there is a 
Node* because it knows it is simply a pointer.

○ (It would be impossible to recursively define the Node with an actual Node object inside the 
struct.)



Pointer to a node

string data

Node* next
0xfca0b000

list

N
od

e*

Node* list = new Node;



Pointer to a node

string data

Node* next
0xfca0b000

list

N
od

e*

Node* list = new Node;

How do we 
update  these 
values (i.e., the 
Node itself)?



Pointer to a node

"someData"

Node* next
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Pointer to a node

"someData"

Node* next
0xfca0b000

list

N
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Node* list = new Node;
(*list).data = "someData";

Use * to 
dereference the 
pointer to get the 
Node struct.



Pointer to a node

"someData"

Node* next
0xfca0b000

list

N
od

e*

Node* list = new Node;
(*list).data = "someData";

Use dot (.) notation 
to update the data 
field of the struct.
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Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;
(*list).data = "someData";
(*list).next = nullptr;

There’s an easier 
way!

"someData" PT
R



Pointer to a node
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Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;
list->data = "someData";
list->next = nullptr;

The arrow notation (->) 
dereferences AND accesses the 
field for pointers that point to 
structs specifically.

"someData" PT
R



Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;
(*list).data = "someData";
(*list).next = nullptr;

"someData" PT
R

Node* list = new Node;
list->data = "someData";
list->next = nullptr;



Announcements



Announcements
● Assignment 4 is due tomorrow Tuesday, July 27 at 11:59pm PDT. 

○ As a reminder, LaIR is happening today from 5-7pm PDT and Tuesday 7-9pm PDT.               
If you’ve encountered any bugs in A4, we encourage you to come to LaIR tonight or tomorrow!

○ When you submit A4, you’ll be redirected to our Mid-Quarter Evaluation. This is a 
comprehensive form that will ask for your feedback about CS106B and the course staff.

● Diagnostic regrade requests are due today at 11:59pm PDT.



How do we manipulate
linked lists?



Common linked lists operations
● Traversal

○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?



Implementing a Stack

Note: You could do this with an array!  This is 
just for the sake of getting practice with 
linked lists.



Stack as a linked list
● We’ll keep a pointer Node* top that points to the “top” element in our stack.

○ This member var will get initialized to nullptr when our stack is empty!
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Stack as a linked list
● We’ll keep a pointer Node* top that points to the “top” element in our stack.

○ This member var will get initialized to nullptr when our stack is empty!

● Our linked list nodes will be connected from the top to the bottom of our stack.

● Our stack will specifically hold integers, so our Node struct will hold an int 
type for our data field:

struct Node {
    int data;
    Node* next;
}



Three Stack operations
● push()

● pop()

● Destructor



Three Stack operations
● push()

● pop()

● Destructor



Common linked lists operations
● Traversal

○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion (at the front)
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?



push()
● Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}
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● Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}
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push()
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How our linked list 
starts:

8

0xfca0b000

top

9 PT
R

N
od

e*

7

Goal:



Let’s code push()!



Initial State (beginning of push() function)





Node *temp = new Node;
temp->data = 7;



Node *temp = new Node;
temp->data = 7;
top = temp; // INCORRECT



Node *temp = new Node;
temp->data = 7;
temp->next = top;



Node *temp = new Node;
temp->data = 7;
temp->next = top;
top = temp;



Three Stack operations
● push()

● pop()

● Destructor



Common linked lists operations
● Traversal

○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?



● Now we want to remove the top value:

...
myStack.pop(); // we want the result to be {9, 8}

pop()

8
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Starting state of the 
list:



● Now we want to remove the top value:

...
myStack.pop(); // we want the result to be {9, 8}

pop()

8
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N
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Goal:



Let’s code pop()!



Initial State (beginning of pop() function)



top = top->next; // INCORRECT



Node* temp = top;



Node* temp = top;
top = top->next;
delete temp;



Three Stack operations
● push()

● pop()

● Destructor



Common linked lists operations
● Traversal

○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?



Destructor
● We have to make sure we delete all of the Nodes.

● The top pointer should be nullptr when we’re done.

0xfca0b000

top

N
od

e*
PT
R



Let’s code 
the destructor!



Summary
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moving all the other Nodes like an array might).
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Linked lists summary
● Linked lists are chains of Node structs, which are connected by pointers.

○ Since the memory is not contiguous, they allow for fast rewiring between nodes (without 
moving all the other Nodes like an array might).

● Common traversal strategy
○ While loop with a pointer that starts at the front of your list
○ Inside the while loop, reassign the pointer to the next node

● Common bugs
○ Be careful about the order in which you delete and rewire pointers!
○ It’s easy to end up with dangling pointers or memory leaks (memory that hasn’t been 

deallocated but that you not longer have a pointer to)
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More on linked lists!


