
Linked Lists
For something very important to you,

would you rather rely on your own memory
or computer memory?

(put your answers in the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data
structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic
real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic
real-world
algorithms

Core
Tools

User/client arrays

 dynamic memory
 management

linked data
structures

Implementation

Today’s
question

How can we use pointers
to organize non-contiguous
memory on the heap?

Today’s
topics

1. Review

2. What is a linked list?

3. How do we manipulate
linked lists?

Review
[memory and pointers]

Levels of abstraction
Abstract Data

Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

How is computer memory organized?

0xfca0b000

Pointers and Memory
● Every variable you create has an address in memory on your computer (either

on the stack or the heap).

Pointers and Memory
● Every variable you create has an address in memory on your computer (either

on the stack or the heap).

● A pointer is just a type of variable that stores a memory address!

Pointers and Memory
● Every variable you create has an address in memory on your computer (either

on the stack or the heap).

● A pointer is just a type of variable that stores a memory address!
○ You specify the type of the variable that it points to so that C++ knows

how much space the value its pointing to is taking up (e.g. string* or int*
or Vector*).

Pointers and Memory
● Every variable you create has an address in memory on your computer (either

on the stack or the heap).

● A pointer is just a type of variable that stores a memory address!
○ You specify the type of the variable that it points to so that C++ knows

how much space the value its pointing to is taking up (e.g. string* or int*
or Vector*).

○ But remember that pointers and what they point to (e.g. string vs.
string*) are two completely different data types!

Pointers and Memory
● Every variable you create has an address in memory on your computer (either

on the stack or the heap)

● A pointer is just a type of variable that stores a memory address!

● When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.
○ E.g. int* number = new int;

Pointers and Memory
● Every variable you create has an address in memory on your computer (either

on the stack or the heap)

● A pointer is just a type of variable that stores a memory address!

● When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.
○ E.g. int* number = new int; Dynamically allocated

variables
are the only reason we’ll use
pointers in this class!

Pointers and Memory
● Every variable you create has an address in memory on your computer (either

on the stack or the heap)

● A pointer is just a type of variable that stores a memory address!

● When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.

● To get the value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).

Pointer Fun with Binky:
a Stanford CS106 Throwback

● Nick Parlante has been teaching
intro CS classes at Stanford for
many years.

● In 1999, he created a stop-motion
claymation video starring a
character named Binky that has
been a staple of explaining
pointers in intro CS classes at
Stanford ever since.

http://www.youtube.com/watch?v=B7lVHq-cgeU

Today: Using pointers
in practice

How can we use pointers to organize
non-contiguous memory on the heap?

Today: Using pointers
in practice

Today: Using pointers
in practice
How can we use pointers to organize
non-contiguous memory on the heap?

Not arrays!

Le
ve

ls
 o

f a
bs

tra
ct

io
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Le
ve

ls
 o

f a
bs

tra
ct

io
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Pointers
move us
across this
boundary!

Le
ve

ls
 o

f a
bs

tra
ct

io
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

These are
built on top
of pointers!

Le
ve

ls
 o

f a
bs

tra
ct

io
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Our focus
for today!

What is a linked list?

What is a linked list?
● A linked list is a chain of nodes.

What is a linked list?
● A linked list is a chain of nodes.

● Each node contains two pieces of information:
○ Some piece of data that is stored in the sequence
○ A link to the next node in the list

What is a linked list?
● A linked list is a chain of nodes.

● Each node contains two pieces of information:
○ Some piece of data that is stored in the sequence
○ A link to the next node in the list

● We can traverse the list by starting at the first node and repeatedly following
its link.

Node

Data

Link

Pointer to a node

Data

Link0xfca0b000

ptr

Pointer to a node that points to a node

Data

Link0xfca0b000

ptr

Data

Link

Pointer to a node that points to a node that points to a node

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

Pointer to a node that points to a node that points to a node

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

???

A linked list!

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

PT
R

A linked list

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

PT
R

Why use linked lists?
● More flexible than arrays!

○ Since they’re not contiguous, they’re easier to rearrange.

● We can efficiently splice new elements into the list or remove existing
elements anywhere in the list. (We’ll see how shortly!)

● We never have to do a massive copy step.

● Linked lists have many tradeoffs, and are not often the best data structure!

Linked lists in C++

The Node struct

struct Node {
 string data;
 Node* next;
}

The Node struct

struct Node {
 string data;
 Node* next;
}

● The structure is defined recursively! (both the Node and the linked list itself)

The Node struct

struct Node {
 string data;
 Node* next;
}

● The structure is defined recursively! (both the Node and the linked list itself)

● The compiler can handle the fact that in the definition of the Node there is a
Node* because it knows it is simply a pointer.

○ (It would be impossible to recursively define the Node with an actual Node object inside the
struct.)

Pointer to a node

string data

Node* next
0xfca0b000

list

N
od

e*

Node* list = new Node;

Pointer to a node

string data

Node* next
0xfca0b000

list

N
od

e*

Node* list = new Node;

How do we
update these
values (i.e., the
Node itself)?

Pointer to a node

"someData"

Node* next
0xfca0b000

list

N
od

e*

Node* list = new Node;
(*list).data = "someData";

Pointer to a node

"someData"

Node* next
0xfca0b000

list

N
od

e*

Node* list = new Node;
(*list).data = "someData";

Use * to
dereference the
pointer to get the
Node struct.

Pointer to a node

"someData"

Node* next
0xfca0b000

list

N
od

e*

Node* list = new Node;
(*list).data = "someData";

Use dot (.) notation
to update the data
field of the struct.

Pointer to a node

"someData"

0xfca0b000

list

N
od

e*

Node* list = new Node;
(*list).data = "someData";
(*list).next = nullptr;

PT
R

Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;
(*list).data = "someData";
(*list).next = nullptr;

There’s an easier
way!

"someData" PT
R

Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;
list->data = "someData";
list->next = nullptr;

"someData" PT
R

Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;
list->data = "someData";
list->next = nullptr;

The arrow notation (->)
dereferences AND accesses the
field for pointers that point to
structs specifically.

"someData" PT
R

Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;
(*list).data = "someData";
(*list).next = nullptr;

"someData" PT
R

Node* list = new Node;
list->data = "someData";
list->next = nullptr;

Announcements

Announcements
● Assignment 4 is due tomorrow Tuesday, July 27 at 11:59pm PDT.

○ As a reminder, LaIR is happening today from 5-7pm PDT and Tuesday 7-9pm PDT.
If you’ve encountered any bugs in A4, we encourage you to come to LaIR tonight or tomorrow!

○ When you submit A4, you’ll be redirected to our Mid-Quarter Evaluation. This is a
comprehensive form that will ask for your feedback about CS106B and the course staff.

● Diagnostic regrade requests are due today at 11:59pm PDT.

How do we manipulate
linked lists?

Common linked lists operations
● Traversal

○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

Implementing a Stack

Note: You could do this with an array! This is
just for the sake of getting practice with
linked lists.

Stack as a linked list
● We’ll keep a pointer Node* top that points to the “top” element in our stack.

○ This member var will get initialized to nullptr when our stack is empty!

Stack as a linked list
● We’ll keep a pointer Node* top that points to the “top” element in our stack.

○ This member var will get initialized to nullptr when our stack is empty!

● Our linked list nodes will be connected from the top to the bottom of our stack.

Stack as a linked list
● We’ll keep a pointer Node* top that points to the “top” element in our stack.

○ This member var will get initialized to nullptr when our stack is empty!

● Our linked list nodes will be connected from the top to the bottom of our stack.

● Our stack will specifically hold integers, so our Node struct will hold an int
type for our data field:

struct Node {
 int data;
 Node* next;
}

Three Stack operations
● push()

● pop()

● Destructor

Three Stack operations
● push()

● pop()

● Destructor

Common linked lists operations
● Traversal

○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion (at the front)
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

push()
● Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

● Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

push()

8

0xfca0b000

top

9 PT
R

N
od

e*

How our linked list
starts:

● Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

push()

8

0xfca0b000

top

9 PT
R

N
od

e*

7

Goal:

push()

8

0xfca0b000

top

9 PT
R

N
od

e*

How our linked list
starts:

8

0xfca0b000

top

9 PT
R

N
od

e*

7

Goal:

Let’s code push()!

Initial State (beginning of push() function)

Node *temp = new Node;
temp->data = 7;

Node *temp = new Node;
temp->data = 7;
top = temp; // INCORRECT

Node *temp = new Node;
temp->data = 7;
temp->next = top;

Node *temp = new Node;
temp->data = 7;
temp->next = top;
top = temp;

Three Stack operations
● push()

● pop()

● Destructor

Common linked lists operations
● Traversal

○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

● Now we want to remove the top value:

...
myStack.pop(); // we want the result to be {9, 8}

pop()

8

0xfca0b000

top

9 PT
R

N
od

e*

7

Starting state of the
list:

● Now we want to remove the top value:

...
myStack.pop(); // we want the result to be {9, 8}

pop()

8

0xfca0b000

top

9 PT
R

N
od

e*

Goal:

Let’s code pop()!

Initial State (beginning of pop() function)

top = top->next; // INCORRECT

Node* temp = top;

Node* temp = top;
top = top->next;
delete temp;

Three Stack operations
● push()

● pop()

● Destructor

Common linked lists operations
● Traversal

○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

Destructor
● We have to make sure we delete all of the Nodes.

● The top pointer should be nullptr when we’re done.

0xfca0b000

top

N
od

e*
PT
R

Let’s code
the destructor!

Summary

Linked lists summary
● Linked lists are chains of Node structs, which are connected by pointers.

○ Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

Linked lists summary
● Linked lists are chains of Node structs, which are connected by pointers.

○ Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

● Common traversal strategy
○ While loop with a pointer that starts at the front of your list
○ Inside the while loop, reassign the pointer to the next node

Linked lists summary
● Linked lists are chains of Node structs, which are connected by pointers.

○ Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

● Common traversal strategy
○ While loop with a pointer that starts at the front of your list
○ Inside the while loop, reassign the pointer to the next node

● Common bugs
○ Be careful about the order in which you delete and rewire pointers!
○ It’s easy to end up with dangling pointers or memory leaks (memory that hasn’t been

deallocated but that you not longer have a pointer to)

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after
CS106B!

C++ basics

Diagnostic
real-world
algorithms

Core
Tools

User/client arrays

 dynamic memory
 management

linked data
structures

Implementation

More on linked lists!

