Linked Lists

For something very important to you,
would you rather rely on your own memory
or computer memory?

(put your answers in the chat)

Object-Ori Roadmap graphic courtesy of Nick Bowman & Kylie Jue
Road map Programming

C++ basics

i arrays
vectors + grids

dynamic memory

stacks + queues management

sets + maps linked data

real-world
algorithms

Life after
recur§8106B!

problem-solving

Diagnostic

Object-Oriented
Road map Programming

C++ basics

_ arrays
vectors + grids

dynamic memory

stacks + queues management

sets + maps

SESUTUGLLUL — e T ——

real-world
algorithms

Life after
algorithmic recur@8S106B!

testing analysis problem-solving

Diagnostic

TOday,S How can we use pointers

to organize non-contiguous

queStiOn memory on the heap?

Review

. What is a linked list?

How do we manipulate
linked lists?

Review

[memory and pointers]

Abstract Data
Structures

Levels of abstraction

Data Organization
Strategies

How is computer memory organized?

OxfcaObOOO O i

Pointers and Memory

e Every variable you create has an address in memory on your computer (either
on the stack or the heap).

Pointers and Memory

e A pointer is just a type of variable that stores a memory address!

Pointers and Memory

e A pointer is just a type of variable that stores a memory address!
o You specify the type of the variable that it points to so that C++ knows
how much space the value its pointing to is taking up (e.g. string* or int*
or Vector®).

Pointers and Memory

e A pointer is just a type of variable that stores a memory address!

o You specify the type of the variable that it points to so that C++ knows
how much space the value its pointing to is taking up (e.g. string* or int*
or Vector®).

o But remember that pointers and what they point to (e.g. string vs.
string*) are two completely different data types!

Pointers and Memory

e \When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.

o E.g.int* number = int;

Pointers and Memory

e \When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to

keep track of it. .
o E.g. int* number = int; Dyr_1am|cally allocated
variables

are the only reason we’ll use
pointers in this class!

Pointers and Memory

e To get the value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).

Pointer Fun with Binky:

a Stanford CS106 Throwback

Nick Parlante has been teaching
intro CS classes at Stanford for
many years.

In 1999, he created a stop-motion
claymation video starring a
character named Binky that has
been a staple of explaining
pointers in intro CS classes at
Stanford ever since.

http://www.youtube.com/watch?v=B7lVHq-cgeU

Today: Using pointers
In practice

Today: Using pointers
In practice

How can we use pointers to organize
non-contiguous memory on the heap?

Today: Using pointers
In practice

How can we use pointers to organize

memory on the %p?
Not arrays!

What is the interface for the user? Abstract Data

Structures
-
O ——— -
[
o Data O izati
9 How is our data organized? ata rganization
0 Strategies
O
©
| C-
O What stores our data? Fundamental C++
% (arrays, linked lists) Data Storage
g -|-
[b) i
-
How is data represented electronically? Computer
(RAM) Hardware

What is the interface for the user? Abstract Data

Structures
-
O ——— -
[
& Data O izati
9 How is our data organized? ata rganization
0 Strategies
O
©
| C-
O What stores our data? Pointers Fundamental C++
L (arrays, linked lists) Data Storage
(1>) move us I
()] across this
— bound’aFy!] l
How is data represented electronically? Computer
(RAM) Hardware

What is the interface for the user? Abstract Data

Structures
-
kel SR A ——
[
@ Data O izati
9 How is our data organized? ata rganization
T Strategies
O
©
| C-
O What stores our data? Fundamental C++
D () These are Data Storage
<1>3 ’ built on top
(0)) of pointers! — — — — &+ — — — =
—
How is data represented electronically? Computer
(RAM) Hardware

What is the interface for the user? Abstract Data

Structures
C
<! il bl
[
o Data Organization
9 How is our data organized? ata Jrganizatio
T Strategies
O
©
| C-
o What stores our data?
[(arrays) Our focus
) ys for today!
>
o e e e e = ———
—
How is data represented electronically? Computer
(RAM) Hardware

What is a linked list?

What is a linked list?

e Alinked list is a chain of nodes.

What is a linked list?

e Alinked list is a chain of nodes.

e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence
o Alink to the next node in the list

What is a linked list?

e Alinked listis a chain of nodes.
e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence

o Alink to the next node in the list

e \We can traverse the list by starting at the first node and repeatedly following
its link.

Node

Data

Link

Pointer to a node

/—> Data

|
l oooooooooo ' Link

Pointer to a node that points to a node

OOOOOOOOOO

/" Data / Data
l.l Ll Ll

Pointer to a node that points to a node that points to a node

/" Data / Data / Data
l.l Ll Ll il

OOOOOOOOOO

Pointer to a node that points to a node that points to a node

Data

Link

Data

e

Link

Data

e

Link

e

27?77

A linked list!

Data

Link

Data

Link

Data

Link

Cabifornia’

-~ NULLeT

g% r/todayilearned

Posted by u/shaka_sulu * 8h

TIL a California man got
'NULL as a personalized \' l J L l
license plate hoping that Phprtha |
P Ping arstechnica.com Colifornia’
'NULL would confuse the NULLPT
computer system. Instead, when cops ‘
left the plate number info empty on a
ticket or citation, the fine went to him.
He got over $12k fines sent to him his
first year.

2 | Q .7_.‘.?, Area
o 20 ko 11dl €

Why use linked lists?

e More flexible than arrays!
o Since they’re not contiguous, they’re easier to rearrange.

e \We can efficiently splice new elements into the list or remove existing
elements anywhere in the list. (We'll see how shortly!)

e We never have to do a massive copy step.

e Linked lists have many tradeoffs, and are not often the best data structure!

Linked lists in C++

The Node struct

struct Node {
string data;
Node* next;

The Node struct

struct Node {
string data;
Node* next;

e The structure is defined recursively! (both the Node and the linked list itself)

The Node struct

struct Node {
string data;
Node* next;

e The structure is defined recursively! (both the Node and the linked list itself)

e The compiler can handle the fact that in the definition of the Node there is a

Node* because it knows it is simply a pointer.
o (It would be impossible to recursively define the Node with an actual Node object inside the
struct.)

Pointer to a node

/ string data
OxfcaOb000

Node* next

list

Node* list = new Node;

Pointer to a node

*

/ string data
§ 0xfca0b000 &\
= Node* next
list How do we
update these
Node* list = new Node; values (i.e., the

Node itself)?

Pointer to a node

Node* next

/ "someData"
Oxfca0b000 '

list

Node* list = new Node;
(*list).data = "someData";

Pointer to a node

*

— / "someData"
§ OxfcaOb000
= Node* next
list
Node* list = new Node; Use * to

(*list).data = "someData";

dereference the
pointer to get the

Pointer to a node

*

E— / "someData"
§ OxfcaOb000 '
Z Node™ next
list
Node* list = new Node; Use dot (.) notation
(*list).data = "someData"; to update the data

field of the struct.

Pointer to a node

]
é OxfcaOb000 '/

list

Node* list = new Node;
(*list).data = "someData";
(*list).next = nullptr;

"someData"

| |

Pointer to a node

Node* list = new Node; There’s an easier
(*list).data = "someData";

(*list).next = nullptr;

"someData" . I.éT
0xfcaOb000 '/ ' i - NUL

list

way!

Pointer to a node

Node* list = new Node;
list->data = "someData";
list->next = nullptr;

"someData" PT
0xfca0b000 '/ ' i S NUL

list

Pointer to a node

"someData" Lé-r
OxfcaOb000 '/ ' i L NU

list
Node* list = new Node; The arrow notation (->)
list->data = "someData"; dereferences AND accesses the
list->next = nullptr; field for pointers that point to

structs specifically.

Pointer to a node

"someData" PT
Oxfca0b000 '/ ' i L NUL

list
Node* list = new Node; Node* list = new Node;
(*list).data = "someData"; list->data = "someData";

(*list).next = nullptr; list->next = nullptr;

Announcements

Announcements

e Assignment 4 is due tomorrow Tuesday, July 27 at 11:59pm PDT.
o As areminder, LalR is happening today from 5-7pm PDT and Tuesday 7-9pm PDT.
If you’ve encountered any bugs in A4, we encourage you to come to LalR tonight or tomorrow!
o When you submit A4, you'll be redirected to our Mid-Quarter Evaluation. This is a
comprehensive form that will ask for your feedback about CS106B and the course staff.

e Diagnostic regrade requests are due today at 11:59pm PDT.

How do we manipulate
linked lists?

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

Implementing a Stack

Note: You could do this with an array! This is
just for the sake of getting practice with
linked lists.

Stack as a linked list

e WEe'll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

Stack as a linked list

e WEe'll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

e Our linked list nodes will be connected from the top to the bottom of our stack.

Stack as a linked list

e WEe'll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

e Our linked list nodes will be connected from the top to the bottom of our stack.

e Our stack will specifically hold integers, so our Node struct will hold an int
type for our data field:
struct Node {
int data;
Node* next;

)
D

Three Stack operations

e push()

e pop()

e Destructor

Three Stack operations

e pop()

e Destructor

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

o How do we rearrange the elements in a linked list?

o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the resuli to be {9, 8, 7}

push()

e Suppose we have the following Stack we want to push to:
Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the resuli to be {9, 8, 7}

How our linked list
starts: Colbifornia’

| ° NULLET
W W

top

push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the resuli to be {9, 8, 7}

Goal:
— | 8 ¥ ~ NULLe
B W e

top

Node

push()

How our linked list

starts:

Goal:

|
x
)
'8 0xfcaOb000
Z

top

—
0xfcaOb000

top

lg;f“///»

(-

(-

Californaa’

NULLT

(-

Cobiformia’

- NULLT

Let’'s code push()!

Initial State (beginning of push() function)

N 00‘0/‘!!>

Y

N 00‘@/*

P

P
e e ¢ {
Node *temp = new Node;
temp->data = 7;

:
Rl s

Node T - volus

o o | 7]

Node *temp = new Node;
temp->data = 7;
top = temp; // INCORRECT

Node *temp = new Node;
temp->data = 7;
temp->next = top;

Node *temp = new Node;
temp->data = 7;
temp->next = top;

top = temp;

Three Stack operations

e push()

e Destructor

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?
o How do we rearrange the elements in a linked list?

e Insertion

o How do we add an element to a linked list?

o How do we remove an element from a linked list?

pop()

e Now we want to remove the top value:

myStack.pop();

Starting state of the
list: , o 9 / aﬁzﬁT_MI;T
1| |i|—/ lir/ 115

top

Node*

pop()

Now we want to remove the top value:

myStack.pop(); // we want the result to be {9, 8}

Goal:

—

*

I;I’/

(-

Node

top

Let’'s code pop()

Initial State (beginning of pop() function)

top = top->next; // INCORRECT

Node* temp = top; [j

top = top->next;
delete temp;

Three Stack operations

e push()

e pop()

Common linked lists operations

o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion

o How do we add an element to a linked list?

o How do we remove an element from a linked list?

Destructor

e \We have to make sure we delete all of the Nodes.

e The top pointer should be nullptr when we're done.

(Cabsforria
_—— Ny

g 0xfcaOb000 '

top

Let's code
the destructor!

Summary

Linked lists summary

e Linked lists are chains of Node structs, which are connected by pointers.

o Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

Linked lists summary

e Linked lists are chains of Node structs, which are connected by pointers.

o Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

e Common traversal strategy

o While loop with a pointer that starts at the front of your list
o Inside the while loop, reassign the pointer to the next node

Linked lists summary

e Linked lists are chains of Node structs, which are connected by pointers.

o Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

e Common traversal strategy

o While loop with a pointer that starts at the front of your list
o Inside the while loop, reassign the pointer to the next node

e Common bugs

o Be careful about the order in which you delete and rewire pointers!
o It's easy to end up with dangling pointers or memory leaks (memory that hasn’t been
deallocated but that you not longer have a pointer to)

What's next?

Object-Oriented
Road map Programming

C++ basics

_ arrays
vectors + grids

dynamic memory

stacks + queues management

sets + maps

SESTTULLUL — T ——

real-world
algorithms

Life after
algorithmic recur@8S106B!

testing analysis problem-solving

Diagnostic

More on linked lists!

OKAY, HUMAN.

HUH? 3
BERCRE YoU

HIT (OMPILE,
YLISTEN Up

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU MAGINE YOURSELF
WALKING OR
M SOMETHING,

AND SUDCDENLY YOU
NISSTEP, STUMBLE,
AND JOLT AWAKE?

YEI/\H'. rﬁ

WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.

®
DOUBLE - CHECK YOUR
DARY POINTERS, OKAY?

-2

