
Multithreading and Parallel
Computing

What’s an example of multitasking that you do in
your everyday life?

Today’s
question

How can we harness the
cores in our computer in
order to parallelize a
workload?

Today’s
question

How can we harness the
cores in our computer in
order to parallelize a
workload safely?

woah.

Today’s
question

How can we harness the
cores in our computer in
order to parallelize a
workload safely?

Multip
le cores?

Parallelize work??

Today’s
topics

1. Review (short!)

2. Some Computer
Architecture (Threads &
Processors)

3. Multithreading Perils (If
we have time!)

Review (short!)
(simple code flow)

How code is run

● At a high level, how does the
computer run your code?
○ Logically, it should interpret your

code from top to bottom!

How code is run

● How does the computer read and
run your code?
○ Logically, it should read your code

from top to bottom!

...but who is it? What’s the abstraction that
encapsulates and executes your main()
function?

Definition

thread
An abstraction that represents a sequential

execution of code.

Definition

thread
An abstraction that represents a sequential

execution of code.

Line by line, top
to bottom!

Definition

thread
An abstraction that represents a sequential

execution of code.

Anything that’s
code!

How to think about threads

● When talking about a thread, you’ll very frequently see it
referenced as a “thread of execution.” code start

code end

How to think about threads

● When talking about a thread, you’ll very frequently see it
referenced as a “thread of execution.”

○ Think about the line on the right as a program’s execution. You start
at main(), which might call other functions, which might return to
main() or call other helper functions. Although the execution flow of
your program may involve many function calls, it will eventually go
from the top of main() to the bottom.

code start

code end

How to think about threads

● When talking about a thread, you’ll very frequently see it
referenced as a “thread of execution.”

○ Think about the line on the right as a program’s execution. You start
at main(), which might call other functions, which might return to
main() or call other helper functions. Although the execution flow of
your program may involve many function calls, it will eventually go
from the top of main() to the bottom.

○ The flow would almost looks like a thread, or a piece of string!

code start

code end

Thread Examples

● Right now, your computer probably has a few threads running right now!
○ What are some examples of threads running on your PC?

Thread Examples

● Are you on Zoom right now?

Thread Examples

● Are you on Zoom right now?

Thread Examples

● Do you have a web browser open?

Thread Examples

● Do you have a web browser open?

*unless you’re using Chrome, sort of.

https://medium.com/@abhinavkorpal/multiprocess-architecture-chrome-browser-50e7c3c27722

Thread Examples

● Are you watching TikToks during lecture?

Thread Examples

I have been told Ms. D’Ameli is a TikTok #influencer

● Are you watching TikToks during lecture?

Question:
How many threads do you think my computer

had active when I was making this slide?

Thread examples

● Right now, your computer is executing a bunch
of threads!

○ At the time of making this slide show, my computer was
handline 3473 threads!

Thread examples

● Right now, your computer is executing a bunch
of threads!

○ At the time of making this slide show, my computer was
handline 3473 threads!

● Many large programs (your web browsers!)
need multiple threads to run. That’s because
they have so many moving parts!

Question:
When you run a program in Qt Creator, is a

thread executing your code?

Answer:
Er… Yes, sort of!

Answer:
Er… Yes, sort of!

Yes, when you run a program in Qt, a thread
encapsulating your code is being executed.

Answer:
Er… Yes, sort of!

Yes, when you run a program in Qt, a thread
encapsulating your code is being executed.

However, a thread alone isn’t enough to run
your code!

software
Programs and abstractions (code). Not a

physical entity.

Definitions

hardware
Physical parts of a computer.

The hardware-software boundary

● A thread alone cannot run your program.

The hardware-software boundary

● A thread alone cannot run your program.
○ A thread is just software that is an abstraction for some code.

The hardware-software boundary

● A thread alone cannot run your program.
○ A thread is just software that is an abstraction for some code.

● A thread needs to work with the computer’s hardware in order to run
the code it encapsulates!

The hardware-software boundary

● A thread alone cannot run your program.
○ A thread is just software that is an abstraction for some code.

● A thread needs to work with the computer’s hardware in order to run
the code it encapsulates!

… but what piece of hardware does this?

CPU (Central Processing Unit)
A piece of hardware responsible for executing
instructions that make up a computer program

Definitions

Core
An individual processor inside of a CPU. Each
core is able to execute code independently of

other cores.

Inside a CPU...

Don’t worry about the other stuff -- we just care about the cores!

Inside a CPU...

Don’t worry about the other stuff -- we just care about the cores!

Inside a CPU...

Don’t worry about the other stuff -- we just care about the cores!

How many concurrent
programs can this CPU
run?

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1

Let’s assume this computer has a
CPU with only one core.

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1

Core is free!

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1Thread 2

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1Thread 2

Core is busy!!

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1Thread 2Thread 3

Waiting
threads

Question:
Who decides how long a thread should be able to run on a

processor? Who decides which thread should run next?

What program was running when the single-core was free in
the example???

Definition

Operating System
Code that manages the relationship between

a computer’s hardware and software.

Thread Scheduling

● The Operating System, determines both how long a thread should
run on a core, AND which thread should run next.

Thread Scheduling

● The Operating System, determines both how long a thread should
run on a core, AND which thread should run next.

Thread Scheduling

● The Operating System, determines both how long a thread should
run on a core, AND which thread should run next.

● A thread will run on a core until its program terminates or it is forced
off the processor by the Operating System.

Thread Scheduling

● The Operating System, determines both how long a thread should
run on a core, AND which thread should run next.

● A thread will run on a core until its program terminates or it is forced
off the processor by the Operating System.
○ There are many reasons why a thread may be booted from a core: sometimes the

operating system deems a thread needs to vacate its spot, and other times a
thread will voluntarily yield its core.

Code example

● Let’s take a break from all of this low-level jazz and write a simple
program!

Code example

● Let’s take a break from all of this low-level jazz and write a simple
program!

● Let’s say I wanted to call this non-computational, but expensive
function a certain number of times:

Code example

● Let’s take a break from all of this low-level jazz and write a simple
program!

● Let’s say I wanted to call this non-computational, but expensive
function a certain number of times:

● This function sends some data to a server over the internet and
waits for a response. This is called an I/O Bound task, because the
slowness of the function does not depend on the speed of the CPU.

Code example

● Let’s take a break from all of this low-level jazz and write a simple
program!

● Let’s say I wanted to call this non-computational, but expensive
function a certain number of times:

● This function sends some data to a server over the internet and
waits for a response. This is called an I/O Bound task, because the
slowness of the function does not depend on the speed of the CPU.

Code example

● Let’s take a break from all of this low-level jazz and write a simple
program!

● Let’s say I wanted to call this non-computational, but expensive
function a certain number of times:

● This function sends some data to a server over the internet and
waits for a response. This is called an I/O Bound task, because the
slowness of the function does not depend on the speed of the CPU.

Code example

● Let’s take a break from all of this low-level jazz and write a simple
program!

● Let’s say I wanted to call this non-computational, but expensive
function a certain number of times:

● This function sends some data to a server over the internet and
waits for a response. This is called an I/O Bound task, because the
slowness of the function does not depend on the speed of the CPU.

Code example

● I’ve already implemented task for you; all you need to do is call it
repeatedly and see how long it takes!

Code example

● I’ve already implemented task for you; all you need to do is call it
repeatedly and see how long it takes!

● Let’s code it up!

Code example

● What happened there?

Code example

● What happened there?
○ Our code was slow as heck! This shouldn’t be surprising,

however. Here’s what happened:

Code example: what happened?

CPU

Before you run your
program, your CPU is
probably chugging
away at other tasks!

Code example: what happened?

CPU
main()

Code example: what happened?

CPU

main()

main() is a pretty
important thread, so it
has the power to boot
another thread off a
core!

Code example: what happened?

CPU

main()

This transition is where your tuition money is going...

Code example: what happened?

CPU

main()

Code example: what happened?

CPU

main()

● When you call the I/O bound function task() from main(), the main()
thread will remove itself from the processor, as it is waiting on an I/O
and therefore unable to do any work. Another thread will take its place
immediately.

Code example: what happened?

CPU

main()

● When you call the I/O bound function task() from main(), the main()
thread will remove itself from the processor, as it is waiting on an I/O
and therefore unable to do any work. Another thread will take its place
immediately.

Question for
yourselves: why does
self-removal make
sense here?

Code example: what happened?

CPU

main()

● When you call the I/O bound function task() from main(), the main()
thread will remove itself from the processor, as it is waiting on an I/O
and therefore unable to do any work. Another thread will take its place
immediately.

Question for
yourselves: why does
self-removal make
sense here?

Code example: what happened?

CPU

● When you call the I/O bound function task() from main(), the main()
thread will remove itself from the processor, as it is waiting on an I/O
and therefore unable to do any work. Another thread will take its place
immediately.

Question for
yourselves: why does
self-removal make
sense here?

Code example: what happened?

CPU

main()

● When the I/O bound task completes, the main thread will attempt to
get back on a core as soon as possible in order to continue (but its
order in line is up to your Operating System)

Code example: what happened?

CPU

main()

● When the I/O bound task completes, the main thread will attempt to
get back on a core as soon as possible in order to continue (but its
order in line is up to your Operating System)

A vacancy!

Code example: what happened?

CPU

main()

● When the I/O bound task completes, the main thread will attempt to
get back on a core as soon as possible in order to continue (but its
order in line is up to your Operating System)

Note how we’re
core agnostic.
This doesn’t
need to be the
case in some
OS schedulers.

Questions about these events?

CPU

main()

Code example: what happened?

● This process of getting on a core, removing ourselves and waiting,
and reacquiring a core happened every time we called task()

Code example: what happened?

● This process of getting on a core, removing ourselves and waiting,
and reacquiring a core happened every time we called task()

● In other words, every time we call task() we have to deal with I/O wait
times that don’t depend on how fast our CPU is.

Code example: what happened?

● This process of getting on a core, removing ourselves and waiting,
and reacquiring a core happened every time we called task()

● In other words, every time we call task() we have to deal with I/O wait
times that don’t depend on how fast our CPU is.
○ Can we do better?

Idea: Multithreading

● Let’s try and implement this same routine using multithreading.
○ That means we’ll try and use multiple threads instead of one

in order to parallelize the workflow!

Idea: Multithreading

● Let’s try and implement this same routine using multithreading.
○ That means we’ll try and use multiple threads instead of one

in order to parallelize the workflow!
● Before you can make threads, you’ll first need to:

#include <thread>

● Bonus points: this is a standard c++ library, so no Stanford-only
woes!

Idea: Multithreading

● To instantiate a thread, it’s pretty simple!

 thread newthread = thread(funcName);

● This should look pretty vanilla, except for the parameter!
○ funcName is the name of a the function you want to

execute!

Idea: Multithreading

● To instantiate a thread, it’s pretty simple!

 thread newthread = thread(funcName);

● This should look pretty vanilla, except for the parameter!
○ funcName is the name of a the function you want to

execute!
○ Let’s make new threads that encapsulate task(), it’s not

that hard… right?

Thread joining

● Woah woah woah, hold your horses, eager beaver:

Thread joining

● Woah woah woah, hold your horses, eager beaver:
● As soon as you instantiate a thread, it begins to run.

Thread joining

● Woah woah woah, hold your horses, eager beaver:
● As soon as you instantiate a thread, it begins to run.

○ Be sure you’re ready before you dispatch them.

Thread joining

● Woah woah woah, hold your horses, eager beaver:
● As soon as you instantiate a thread, it begins to run.

○ Be sure you’re ready before you dispatch them.
○ Threads are somewhat resource intensive, so when we dispatch

them, we need to keep track of them so that we can clean up their
memory once they’ve completed.

Thread joining

● Woah woah woah, hold your horses, eager beaver:
● As soon as you instantiate a thread, it begins to run.

○ Be sure you’re ready before you dispatch them.
○ Threads are somewhat resource intensive, so when we dispatch

them, we need to keep track of them so that we can clean up their
memory once they’ve completed.
■ This is very much like the new and delete keywords you’ve

used!

Thread joining

● After you’ve spawned a thread, simply call threadName.join() to clean
it up.

Thread joining

● After you’ve spawned a thread, simply call threadName.join() to clean
it up.
○ This usually requires storing your threads in a collection! Note:

Stanford’s Vector can’t store threads because it needs an update :(

More Threads

● You can call join() from your main() thread immediately after spawning
the thread. Don’t worry, main() will wait for your thread to finish :).

More Threads

● You can call join() from your main() thread immediately after spawning
the thread. Don’t worry, main() will wait for your thread to finish :).

● To pass params to a thread, just include them as the subsequent
parameters in the thread() instantiation.

Questions so far?

Let’s Parallelize!

What happened?

● Wow, that was super fast!

What happened?

● When our main() thread spawned up a new thread, the new thread might
have taken a new core on the processor!

○ note* we don’t know exactly what happened, but it could have done this!

CPU

main()

What happened?

● When our main() thread spawned up a new thread, the new thread might
have taken a new core on the processor!

○ note* we don’t know exactly what happened, but it could have done this!

CPU

worker 1
main()

What happened?

● When our main() thread spawned up a new thread, the new thread might
have taken a new core on the processor!

○ note* we don’t know exactly what happened, but it could have done this!

CPU

worker 1
main()

What happened?

● When our main() thread spawned up a new thread, the new thread might
have taken a new core on the processor!

○ note* we don’t know exactly what happened, but it could have done this!

CPUworker 1

main()

What happened?

● Note now that both main() and worker 1 are running concurrently!

CPUworker 1

main()

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced

CPUworker 1

main()

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced

CPU

main()

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced
● But lo! Who is that in the distance?

CPU

main()

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced
● But lo! Who is that in the distance?

CPU

main()
worker 2

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced
● But lo! Who is that in the distance?
● While worker 1 was waiting for its I/O, main() was busy spinning up new

threads!

CPU

main()

worker 2

What happened?

● This process will continue -- each worker thread will only need to be on a core
for a fraction of a second, just to set up the I/O, and then it can leave the
processor and let a new worker thread set up its I/O.

CPU

main()

worker 2

What happened?

● At this point, we’re here in the code:

CPU

main()

What happened?

● At this point, we’re here in the code:

CPU

main()

Check your understanding: What are the
worker threads doing right now?

What happened?

● At completion time, each thread will be able to retake a core, but the core will
only be needed for a few instructions! Then the task() will finish, and a new
thread will try and complete!

CPU

main()

worker 2

What happened?

CPU

main()

worker 2

● A fair warning -- you can’t predict which worker thread will begin working first!
It might seem like worker 1 should always start first, but the OS and CPU work
in unpredictable ways!

What happened?

● The example you saw was blazing fast because the task at hand
only needed to be on the processor for a short period of time.

What happened?

● The example you saw was blazing fast because the task at hand
only needed to be on the processor for a short period of time.

● As you can see, the process of yielding a core to another worker
takes an almost imperceptible amount of time!

What happened?

● The example you saw was blazing fast because the task at hand
only needed to be on the processor for a short period of time.

● As you can see, the process of yielding a core to another worker
takes an almost imperceptible amount of time!
○ That’s because your OS is doing it constantly :o

What happened?

● The example you saw was blazing fast because the task at hand
only needed to be on the processor for a short period of time.

● As you can see, the process of yielding a core to another worker
takes an almost imperceptible amount of time!
○ That’s because your OS is doing it constantly :o

● Parallelization is less successful when you don’t have long I/O
waits, because then task completion depends on chip speed!
○ Take an Operating Systems class to find out more :)

Questions?

Bonus! Race Conditions

● Remember when I said that we can’t really determine the order that threads
will run in? Let’s show that!

Bonus! Race Conditions

● Remember when I said that we can’t really determine the order that threads
will run in? Let’s show that!

● Let’s add logging to our code to show the order that threads show up!

Bonus! Race Conditions

● Remember when I said that we can’t really determine the order that threads
will run in? Let’s show that!

● Let’s add logging to our code to show the order that threads show up!
● It’s easy! Just add a print statement inside task() and keep an id variable!

Bonus! Race Conditions

● Remember when I said that we can’t really determine the order that threads
will run in? Let’s show that!

● Let’s add logging to our code to show the order that threads show up!
● It’s easy! Just add a print statement inside task() and keep an id variable!

○ Recall that we can add parameters to our thread instantiation by simply appending the
parameter to our thread instantiation

thread newthread = thread(funcName, param1);

Bonus! Race Conditions

● Remember when I said that we can’t really determine the order that threads
will run in? Let’s show that!

● Let’s add logging to our code to show the order that threads show up!
● It’s easy! Just add a print statement inside task() and keep an id variable!

○ Recall that we can add parameters to our thread instantiation by simply appending the
parameter to our thread instantiation

● Let’s try it!

thread newthread = thread(funcName, param1);

woah...

Definition
Race Condition

A bug that is the product of two threads
“racing” against each other and operating on

the same state in the incorrect order.

Bonus: Race Conditions

● Congratulations, you’ve experienced your first race condition!

Bonus: Race Conditions

● Congratulations, you’ve experienced your first race condition!
● It turns out that cout is not thread-safe, meaning that it will not behave

predictably if you have multiple threads calling it at the same time!

Bonus: Race Conditions

● Congratulations, you’ve experienced your first race condition!
● It turns out that cout is not thread-safe, meaning that it will not behave

predictably if you have multiple threads calling it at the same time!
○ Every time you printed to the console, you had some jumbling of

all 10 cout statements.

Bonus: Race Conditions

● Congratulations, you’ve experienced your first race condition!
● It turns out that cout is not thread-safe, meaning that it will not behave

predictably if you have multiple threads calling it at the same time!
○ Every time you printed to the console, you had some jumbling of

all 10 cout statements.

● How can we fix this?

Bonus: Race Conditions

● Congratulations, you’ve experienced your first race condition!
● It turns out that cout is not thread-safe, meaning that it will not behave

predictably if you have multiple threads calling it at the same time!
○ Every time you printed to the console, you had some jumbling of

all 10 cout statements.

● How can we fix this? Take a systems class :D

Any Last Questions?

What’s next?

real-world
algorithms

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

C++ basics

Diagnostic

Core
Tools

User/client
Implementation

Life after
CS106B!

