Ordered Data Structures:
Grids, Queues, and Stacks

What’s an example of “ordered data”
that you’ve encountered in your life?
(put your answers in the chat)




Object-Oriented
Roadmap Programming

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Diagnostic




Object-Oriented
Roadmap Programming

C++ basics

\

arrays

dynamic memory
management

linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving



Object-Oriented
Roadmap Programming

C++ basics

\

arrays

dynamic memory
management

linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving



TOday’S When is it appropriate to

use different types of

guestion ordered data structures?




1. Review
Today'’s
topics

2. Grids

[2.5 GridLocation + structs]

1. Queues

2. Stacks




Review

(vectors)



Abstract Data Types

e Data structures, or , allow programmers to store
data in structured, organized ways

e These ADTs give us certain guarantees about the organization and properties
of our data




Abstract Data Types

A DTQ prov:‘de for data .('fomge that programmerg

can use without understanding the under/y:‘ug /‘m,b/ementat/au./




Our first ADT: Vectors

e A vectoris an ordered collection of elements of the same type that can grow
and shrink in size.

e Each element in the collection has a specific location, or index.
e All elements in a vector must be of the same type.

e \ectors are flexible about the number of elements they can store. You can
easily add and remove elements, and vectors also know their current size.



Grids



What is a Grid?

e A 2D array, defined with a particular width and height




What is a Grid?

A 2D array, defined with a particular width and height

K We <oy array inctead of vector here
becavse the dimensions are

ectabliched when the Grid ic created.




What is a Grid?

A 2D array, defined with a particular width and height

Useful for spreadsheets, game boards, graphics,
cartography, geology, and more!




What is a Grid?

e A 2D array, defined with a particular width and height

e Useful for spreadsheets, game boards, graphics, False False False
cartography, geology, and more!
False False False
e Three ways to declare a Grid
©  Grid<type> gridName; False False False

o Grid<type> gridName(numRows, numCols);
o  Grid<type> gridName = {{rOcO, rOc1, rOc2}, {r1cO, ric1, ric2},...};




What is a Grid?

e A 2D array, defined with a particular width and height

e Useful for spreadsheets, game boards, graphics, 0 9 9
cartography, geology, and more!
(%] %] %)
e Three ways to declare a Grid
o  Grid<type> gridName; 0 0 0

Grid<int> board;
board.resize(3, 3);
board[0][0] = 2;
board[1][@] = 6;



What is a Grid?

e A 2D array, defined with a particular width and height

e Useful for spreadsheets, game boards, graphics, 0 0 9
cartography, geology, and more!

(%] (%] (%]
e Three ways to declare a Grid

o  Grid<type> gridName;

%) %) 0

Grid<int> board; &N Jf you declare a board with wo inifialization,
board.resize(3, 3);

board[0][0] = 2;
board[1][0] = 6; it. Recizing will fill it with default values for

that type.
D

you must resize it or reassign it before ucing



What is a Grid?

e A 2D array, defined with a particular width and height

e Useful for spreadsheets, game boards, graphics, 2 9 9
cartography, geology, and more!
6 %] %)
e Three ways to declare a Grid
o Grid<type> gridName(numRows, numCols); 0 0 0

Grid<int> board(3, 3);
board[0][0] = 2;
board[1][@] = 6;




What is a Grid?

e A 2D array, defined with a particular width and height 2 0 0

e Useful for spreadsheets, game boards, graphics, 6 %)
cartography, geology, and more!

. 0 0 0
e Three ways to declare a Grid
o  Grid<type> gridName = {{rOcO, rOc1, rOc2}, {r1cO, ric1, ric2},...};

Grid<int> board = {{2}, {6}};




What is a Grid?

e A 2D array, defined with a particular width and height

2 %] %)
e Useful for spreadsheets, game boards, graphics,
cartography, geology, and more!
grapny, g gy 6 0 0
e Three ways to declare a Grid
o Grid<type> gridName,; 0 %) %)

o  Grid<type> gridName(numRows, numCols);
o  Grid<type> gridName = {{rOcO, rOc1, rOc2}, {r1cO, ric1, ric2},...};




Grid methods

e The following methods are part of the Grid collection and can be useful:

o gname.numRows (): Returns the number of rows in the Grid.

o gname.numCols(): Returns the number of columns in the Grid.

o gname[i][j]: selects the element in the ith row and jth column.

o gname.resize(rows, cols): Changes the dimensions of the Grid and
re-initializes all entries to their default values.

o gname.inBounds(row, col): Returns true if the specified row, column
position is in the Grid, false otherwise.

e For the exhaustive list, check out the


https://web.stanford.edu/dept/cs_edu/cppdoc/Grid-class.html

Grid methods

e The following methods are part of the Grid collection and can be useful:

o gname.numRows ( ): Returns the number of rows in the Grid.

o gname.numCols(): Returns the number of columns in the Grid.

o gname[i][j]: selects the element in the ith row and jth column.

o gname.resize(rows, cols): Changes the dimensions of the Grid and
re-initializes all entries to their default values.

o gname.inBounds(row, col): Returns true if the specified row, column
position is in the Grid, false otherwise.

e For the exhaustive list, check out the


https://web.stanford.edu/dept/cs_edu/cppdoc/Grid-class.html

How to traverse a Grid

void printGrid(Grid<char>& grid) {
for(int r = 9; r < grid.numRows(); r++) {
for(int ¢ = 0; c < grid.numCols(); c++) {
cout << grid[r][c];

}

cout << endl;




How to traverse a Grid 'y | e
void printGrid(Grid<char>& grid) { e’ "h'
for(int r = 9; r < grid.numRows(); r++) {
for(int ¢ = 9; ¢ < grid.numCols(); c++) A g ‘W'
cout << grid[r][c];
}
cout << endl; A. yeehaw
} B. yea
ehw
} Poll: What is the output C. ye
of this function called eh
on the provided grid aw
D. None of the above

going to be?



How to traverse a Grid

r

C
void printGrid(Grid<char>& grid) {

0
0

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o
for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];
} eI lhl
cout << endl;
} aI lwl
} Output:




How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

0
0

Variables:

for(int r = 0; r < grid.numRows(); r++) { . o
for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];
} eI Ihl
cout << endl;
} aI IWI
} Output:
y




How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

0
1

Variables:

for(int r = 9; r < grid.numRows(); r++) { ' -
for(int ¢ = 9; c < grid.numCols(); c++) { y <
cout << grid[r][c];
} eI Ihl
cout << endl;
} aI IWI
h Output:
ye




How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

1
0

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o

for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];

} el Ihl
cout << endl;

} aI IWI

} Output:
ye
e




How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

1
1

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o
for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];
} eI lhl
cout << endl;
} aI IWI
} Output:
ye
eh




How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

2
0

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o
for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];
) e’ 'h'
cout << endl;
} a’ 'w'
} Output:
ye
eh
a




How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

2
1

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o
for(int ¢ = 9; c < grid.numCols(); c++) { y €
cout << grid[r][c];
) e' 'h'
cout << endl;
} a' ‘w'
} Output:
ye
eh
aw




Common pitfalls when using Grids

e Don’t forget to specify what data type is stored in your grid
NO: Grid board; YES: Grid<char> board;

e Like Vectors and other ADTs, Grids should be passed by reference when used
as function parameters

e Watch your variable ordering with Grid indices! Rather than using i and j as
indices to loop through a grid, it’s better to use r for rows and ¢ for columns.

e Unlike in other languages, you can only access cells (not individual rows).
grid[@] » doing this will cause an error!



Detecting, Destroying, and Removing Landmines:

Turning dangerous fields into playing fields

0

. » o ; { . o W
e \ A . S
» — -~ "
oL, T <\ 2 »
) el \ g e ~ A SN )
i S o . _ . >
’ { il e g 5 gt
f ) ‘ o de - -
LU Ces : b : - =
g =N

: A STLEA SR I N et LT
Source: https://www.cambodiadaily.com/news/thai-army-assists-with-removal-of-cambodian-border-mines-150588/






What if we want to éee,b
track of afl celle where a mine

ie precent?

And we want to note whether

it is no longer explosive.



Structs +
GridLocation



struct
A way to bundle different types of info in C++.
It’s like creating a custom data structure.




The GridLocation struct

e A pre-defined struct in the Stanford C++ libraries that makes it more convenient
to store Grid locations:

struct GridLocation {
int row; N
int col;

ctruct definition




The GridLocation struct

e A pre-defined struct in the Stanford C++ libraries that makes it more convenient
to store Grid locations:

struct GridLocation {

int row;
int col; (thece can be

} different ty,ber]

ctruct membere




The GridLocation struct

e A pre-defined struct in the Stanford C++ libraries that
makes it more convenient to store Grid locations

e TJo declare a struct, you can either assign each of its members separately or
assign it when it’s created:
GridLocation origin = {0, 0};

struct GridLocation {
int row;

GridLocation origin; int col;

origin.row = 0;
origin.col = 0;



The GridLocation struct

e A pre-defined struct in the Stanford C++ libraries that
makes it more convenient to store Grid locations

e TJo declare a struct, you can either assign each of its members separately or
assign it when it’s created:
GridLocation origin = {0, 0};

Vou can access members in a ctruct USInG the dot struct GridLocation {

notation (no parentheces after the member namel) int row;

GridLocation origin; int col;
origin.row = 0; }

origin.col = 0;




The GridLocation struct

e A pre-defined struct in the Stanford C++ libraries that
makes it more convenient to store Grid locations

e TJo declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0};

struct GridLocation {

GridLocation origin; int row;
origin.row = 0; int col;
origin.col = 0; }



Vector<GridLocation> mineCells;
GridLocation eastField = {3,6};
GridLocation westField = {1,2};
mineCells.add(eastField);
mineCells.add(westField);

Vs.

Vector<int> rowIndices;
Vector<int> colIndices;
rowIndices.add(3);
rowIndices.add(1);
colIndices.add(6);
colIndices.add(2);

o

© ~ (o] ] B w N - o

Ac an exercice on your own: Think about how you
would answer the quection “Ic there a mine at (4,
3)?" for each of the different reprecentations (with
and without Gridlocation structe).



Announcements



Announcements

e Assignment 1is due tomorrow (Tuesday) at 11:59pm PDT!

* Recall our 48 hour late policy, but please submit on-time if you want a small grade boost!

* If you submit more than once after tomorrow’s deadline, please notify your SL. Else, they may not
grade your newest version.

* Don’t use EXPECT_ERROR on Al. We haven’t covered error handling yet, so EXPECT_ERROR wiill
not compile. S/o to Tomas for finding this!

* Assignment 2 will be released by the end of the day on Wednesday.

* If you'd like to submit an extension to a program for extra credit, please be
sure to submit two versions of your assignment to paperless, one with and
one without the extension!



Queues



What is a queue?

e Like a real queue/line!

»
/\
I ’
|
e First personlInisthe
First person Out (FIFO)
o  When you remove (dequeue) people from the queue, you remove them
from the front of the line.

e Last personinis the last person served
o  When you insert (enqueue) people into a queue, you insert them at the
back -- the end of the line




Queue methods

e A queue must implement at least the following functions:
o enqueue(value) (or add(value)) - place an entity onto the back of the
queue

o dequeue() (or remove()) - remove an entity from the front of the queue
and return it

o peek() (or front()) - look at the entity at the front of the queue, but don’t
remove it
o 1isEmpty() - a boolean value, true if the queue is empty, false if it has at
least one element. (note: a runtime error occurs if a dequeue() or front()
operation is attempted on an empty queue).
e Forthe exhaustive list, check out the


https://web.stanford.edu/dept/cs_edu/cppdoc/Queue-class.html

Queue example

Queue<int> line; /] {} empty queue
line.enqueue(42); /] {42}

line.enqueue(-3); /] {42, -3}
line.enqueue(17); // {42, -3, 17}

cout << line.dequeue() << endl; /] 42 Line is {-3, 17}
cout << line.peek() << endl; // -3 Line 1s {-3, 17}

cout << line.dequeue() << endl; // -3 Line is {17}

You can also create a queue using:
Queue<int> line = {42, -3, 17}%};



Stacks



What is a stack?

e Modeled like an actual stack (of pancakes)

e Only the top element in a stack is accessible.
o The Last item In is the First one Out. (LIFO)

e The push, pop, and top operations are the only
operations allowed by the stack ADT.

PUSH




Stack methods

e A stack is an abstract data type with the following behaviors/functions:
o push(value) (or add(value)) - place an entity onto the top of the stack
o pop() (or remove()) - remove an entity from the top of the stack and
return it
o peek() (or top()) - look at the entity at the top of the stack, but don’t
remove it
o 1isEmpty() - a boolean value, true if the stack is empty, false if it has at
least one element. (Note: a runtime error occurs if a pop() or top()
operation is attempted on an empty stack.)
e For the exhaustive list, check out the


https://web.stanford.edu/dept/cs_edu/cppdoc/Stack-class.html

Stack example

Stack<string> wordStack; // {}, empty stack
wordStack.push(“dog”); // {“dog”}
wordStack.push(“cat”); // {“dog”, “cat”}
wordStack.push(“mouse”™); // {“dog”, “cat”, “mouse”}
cout << wordStack.pop() << endl; // “mouse”

cout << wordStack.peek() << endl; // “cat”
cout << wordStack.pop() << endl; // “cat” (stack is {“dog™})

// You can also create a stack using:
Stack<string> wordStack = {“dog”, “cat”, “mouse”};
// the “top” is the rightmost element



Queue + Stack
patterns



Common patterns and pitfalls with stacks and queues

Idioms:

1. Emptying a stack/queue




ldiom 1. Emptying a queue/stack

Queue<int> queueldioml;

// produce: {1, 2, 3, 4, 5, 6}
for (int i = 1; i <= 6; i++) {
queueIdioml.enqueue(i);

}
while (!queueldioml.isEmpty()) {

cout << queueldioml.dequeue() << " ";
}

cout << endl;

// prints: 1 2 3456



ldiom 1. Emptying a queue/stack

Queue<int> queueldioml; Stack<int> stackIdioml;

// produce: {1, 2, 3, 4, 5, 6} // produce: {1, 2, 3, 4, 5, 6}

for (int 1 = 1; 1 <= 6; i++) { for (int 1 = 1; i <= 6; i++) {
queueIdioml.enqueue(i); stackIdioml.push(i);

} }

while (!queueldioml.isEmpty()) { while (!stackIdioml.isEmpty()) {
cout << queueldioml.dequeue() << " "; cout << stackIdioml.pop() << " ";

} }

cout << endl; cout << endl;

// prints: 1 2 3456 // prints: 6 54 3 2 1



Common patterns and pitfalls with stacks and queues

Idioms:

2. Iterating over and modifying a stack/queue = only calculate the size once
before looping




ldiom 2: lterating over and modifying queue/stack

Queue<int> queueldiom2 = {1,2,3,4,5,6};

int origQSize = queueldiom2.size();
for (int i = 0; i < origQSize; i++) {
int value = queueldiom2.dequeue();
// re-enqueue even values
if (value % 2 == 0) {
queueIdiom2.enqueue(value);

}

cout << queueldiom2 << endl;

// prints: {2, 4, 6}



ldiom 2: lterating over and modifying queue/stack

Queue<int> queueldiom2 = {1,2,3,4,5,6};

int origQSize = queueldiom2.size();
for (int i = 0; i < origQSize; i++) {
int value = queueldiom2.dequeue();
// re-enqueue even values
if (value % 2 == 0) {
queueIdiom2.enqueue(value);

}

cout << queueldiom2 << endl;

// prints: {2, 4, 6}

Stack<int> stackIdiom2 = {1,2,3,4,5,6};
Stack<int> result;

int origSSize = stackIdiom2.size();
for (int i = 0; i < origSSize; i++) {
int value = stackIdiom2.pop();
// add even values to result
if (value % 2 == 0) {
result.push(value);
}
}

cout << result << endl;

// prints: {6, 4, 2}



Common patterns and pitfalls with stacks and queues

Idioms:

2. Iterating over and modifying a stack/queue = only calculate the size once
before looping

Common bugs:

e If you edit the ADT within a loop, don’t use .size() in the loop’s
conditions! The size changes while the loop runs.

e Unlike with queues, you can’t iterate over a stack without destroying
it » think about when it might be beneficial to make a copy instead.




Tradeoffs with queues and stacks (vs. other ADTSs)

e What are some downsides to using a queue/stack?
o No random access. You get the front/top, or nothing.
o No side-effect-free traversal — you can only iterate over all elements in the structure by
removing previous elements first.
o No easy way to search through a queue/stack.

e \What are some benefits?
o  Useful for lots of problems — many real-world problems can be solved with either a LIFO or

FIFO model
o Very easy to build one from an array such that access is guaranteed to be fast. (We’ll talk more
about arrays later in the quarter, and we'll talk about what "fast" access means later this week.)



Activity: What ADT
should we use?



For each of the tasks, pick which ADT is best suited
for the task:

The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

Vectors

- LalR requests
Grids

- Your browsing history
Queues

- Google spreadsheets
Stacks

- Call centers (“your call will be handled by the next
available agent”)



For each of the tasks, pick which ADT is best suited
for the task:

- Jobs submitted to a printer that can also be cancelled

Vectors

- LalR requests
Grids

- Your browsing history
Queues

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)



For each of the tasks, pick which ADT is best suited
for the task:

- The undo button in a text editor

- LalR requests
Grids

- Your browsing history

- Google spreadsheets
Stacks

- Call centers (“your call will be handled by the next
available agent”)



For each of the tasks, pick which ADT is best suited
for the task:

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

Vectors
Grids
- Your browsing history
- Google spreadsheets
Stacks

- Call centers (“your call will be handled by the next
available agent”)



For each of the tasks, pick which ADT is best suited
for the task:

- The undo button in a text editor
- Jobs submitted to a printer that can also be cancelled

- LalR requests
Grids

Queues
- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)



For each of the tasks, pick which ADT is best suited
for the task:

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

Vectors

- LalR requests

- Your browsing history
Queues
Stacks

- Call centers (“your call will be handled by the next
available agent”)



For each of the tasks, pick which ADT is best suited
for the task:

The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

Vectors
- LalR requests
Grids
- Your browsing history
- Google spreadsheets
Stacks



ADTs summary (so far)



Ordered ADTs with accessible
indices

Types:

e Vectors (1D)
e Grids (2D)

Traits:

e FEasily able to search through all
elements

e Can use the indices as a way of
structuring the data

Ordered ADTs where you can’t
access elements by index

Types:

e Queues (FIFO)
e Stacks (LIFO)

Traits:

e Constrains the way you can insert
and access data

e More efficient for solving specific
LIFO/FIFO problems



Review

(pass-by-reference)



What exactly is a reference?

[he type has an ampersand
double& K\[&) after it to indicate it ic a

® References look like this:
reference to a data type

weight ref rather than the type itself.
References have

names and types,
just like regular
variables.




When we use references

e To allow helper functions to edit data structures in other functions

e To avoid making new copies of large data structures in memory
Passing data structures by reference makes your code more efficient!

e References also provide a workaround for multiple return values

o Your function can take in multiple pieces of information by reference and modify them all.

o Inthis way, you can "return" both a modified Vector and some auxiliary piece of information
about how the structure was modified.

o It’s as if your function is returning 2 updated pieces of information to the function that called it!



What’s next?



Object-Oriented
Roadmap Programming

C++ basics

\

arrays

dynamic memory
management

linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving



Unordered ADTs: Sets and Maps

ici Do
patricia 1
120-5661 arlotte 621 Northstar Dr.weses
A RLOTTE LINDBERG
BAUER CHAF e




