Trees

Is there any component of "Life after CS106B™
that you would like us to focus on
in the final lecture next week?

(put your answers in the chat)

0] eJ[Ya & OliR0admap graphic courtesy of Nick Bowman & Kylie Jue
Road map Programming

C++ basics

. arrays
vectors + grids

dynamic memory

stacks + queues management

sets + maps linked data

real-world
algorithms

Diagnostic

Life after
recursive CS106B!

problem-solving

Object-Oriented
Road map Programming

C++ basics

_ arrays
vectors + grids

dynamic memory

stacks + queues management

sets + maps

SESTTULLUL — T ——

real-world
algorithms

Life after
algorithmic recur@8S106B!

testing analysis problem-solving

Diagnostic

TOd ay,S How can we better

organize data stored in a

queStiOnS linked data structure?

. Linked Data Structure

Overview

Introduction to Trees

. Trees in C++

Review

[linked data structures]

Linked Data Structures

e Last week, we explored linked lists, our first example of a

Linked Data Structures

e Last week, we explored linked lists, our first example of a

Cabifornia’

o E

Linked Data Structures

e Linked data structures are distinguished by the fact that they stored data in a
manner. This means that the data is stored across many different
locations in computer memory.

Linked Data Structures

e In order to organize this data, we had to in
the concept of a "node."

Linked Data Structures

e Using pointers lets us to other nodes to impose structure (why?)

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.
o Insertion/removal of elements of a linked list was very quick because it only
involved fast pointer rewiring operations. We never had to "shift" elements over to
make room.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct

advantages over working with arrays.
o Insertion/removal of elements of a linked list was very quick because it only
involved fast pointer rewiring operations. We never had to "shift" elements over to

make room.
o Because all the data was stored in dynamic memory, expanding the size of the

linked list was very easy and never required an expensive "re-sizing" operation
that had to copy all the data.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

e However, we also ran into some limitations when it came to working with lists:

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

e However, we also ran into some limitations when it came to working with lists:
o Data was organized in a linear structure, which meant the path to traverse
between any two nodes (specifically between the front and a node later on in the
list) could get very long.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

e However, we also ran into some limitations when it came to working with lists:
o Data was organized in a linear structure, which meant the path to traverse
between any two nodes (specifically between the front and a node later on in the
list) could get very long.
o Finding elements in a linked list is an O(n) operation, which can get slow when we
want to store many elements.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

e However, we also ran into some limitations when it came to working with lists:

o Data was organized in a linear structure, which meant the path to traverse
between any two nodes (specifically between the front and a node later on in the
list) could get very long.

o Finding elements in a linked list is an O(n) operation, which can get slow when we
want to store many elements.

o We couldn't feasibly write recursive algorithms that traversed linked lists, due to
stack frame limits that came into play since traversal algorithms required one stack
frame per node.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

e However, we also ran into some limitations when it came to working with lists.
o Can we organize data in a linked data structure in such a way that

the path between the "front" and any element in the structure is short (better
than O(n)) even if there are many elements?

How can we better organize
data stored in a linked data
structure?

Interactive Exercise

[borrowed from Keith Schwarz]

Take a deep
breath.

And exhale...

Feel nicely
oxygenated?

Beautiful art by Keith

Your lungs

have about

500 willion
alveoli..

Beautiful art by Keith

Your lungs

have about

500 willion
alveoli..

yet the
path 1o each
one is short,

The distance from each element in this structure to
the top of the structure is small, even if there are many
elements.

Trees

Throwback Thursday (on Monday)

e \We've already seen trees before in this class... decision trees!

Throwback Thursday (on Monday)

e \We've already seen trees before in this class... decision trees!

cart
/ \
art cat Car

o L /1\ N T B

It at ar rt ¢t cr at ¢t ca ar cr ca
YAV A A W A N A N A A N N A VY AV AN AN

Nl BE BE 1 e e e e B I e e

Throwback Thursday (on Monday)

e \We've already seen trees before in this class... decision trees!

cart
/ \
art cat Car

o L /1\ N T B

It at ar rt ¢t cr at ¢t ca ar cr ca
YAV A A W A N A N A A N N A VY AV AN AN

Nl BE BE 1 e e e e B I e e

Throwback Thursday (on Monday)

e \We've already seen trees before in this class... decision trees!

cart

art cat car

o L /1\ N T B

It at ar rt ¢t cr at ¢t ca ar cr ca
YAV A A W A N A N A A N N A VY AV AN AN

Nl BE BE 1 e e e e B I e e

Throwback Thursday (on Monday)

e \We've already seen trees before in this class... decision trees!

cart
/ \
art cat Car
nm at ar it ¢t cr at ct ca ar cr ca
/N I\ —% 7Y 7% 75 /Y JY 2y Fir—A /N
Nl NE e 1 3 | .| e e e I e e

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

Trees can
be used to
describe

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

Trees are
used to
model the

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.
run Trees describe
def run() { @ the syntax
move(); _
while (notFinished()) { move "N — while
if (isPathClear()) { @ @
move(); if/else” N

} else {

move
turnLeft(); D @
} isPathClear -~

move();

} {::] move turnLeft
) @ D

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

e But, it is not a coincidence that we first saw them appear in conjunction with
recursion.

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

e But, it is not a coincidence that we first saw them appear in conjunction with
recursion.

e Trees are inherently defined recursively!

What is a tree?

A tree is
either...

What is a tree?

A tree is

either... An empty data
structure, or...

What is a tree?

A tree is

either... An empty data

structure, or...

A single node
(parent), with zero
or more non-empty
subtrees (children)

tree
A tree is hierarchical data organization
structure composed of a root value
linked to zero or more non-empty
subtrees.

Tree Terminology

Tree Terminology

Tree Terminology

A

Tree Terminology A with O or
more non-empty

Tree Terminology A with O or
more non-empty

Tree Terminology A with O or
more non-empty

ONOR(O)NONO

Tree Terminology A with O or
more non-empty

ONONOR(OONO

Tree Terminology A with O or
more non-empty

Q

Tree Terminology

Tree Terminology A is the

A of the
tree

Tree Terminology

B,C,D, E, and
F are
of A

Tree Terminology A is the

A of B, C, D, E,
and F

Tree Terminology B has no children.
A node with no
° children is called
a .
) (o) @ & ©

Tree Terminology B,G,HID,E,
J, and L are all

_ G, H and | all have
Tree Terminology the same parent.

Nodes with the
° same parent are

We can define a
through the

° tree between two
nodes.

Tree Terminology

We can define a
through the

° tree between two
nodes.

We can only follow the links in the direction the arrow points! a

Tree Terminology

The from
AtoLisA->F
A > K->L

Pt

Tree Terminology

Tree Terminology

The of the path is
number of edges it
contains. The path from
A to L has length 3.

) O & © ¢

Tree Terminology The of a node is
the length of its path

° to the root.

Tree Terminology The of a node is
the length of its path

depth: 0 A to the root.

Tree Terminology The of a node is
the length of its path

depth: 0 to the root.

depth: 1 B C D E F

Tree Terminology The of a node is
the length of its path

to the root.

depth: 0

depth: 1

depth: 2 G H I J K

Tree Terminology The of a node is
the length of its path

depth: 0 ° to the root.

ENONONONONO
w: OO 0JO

depth: 3 L

Tree Terminology ggfeined ot bgftﬁ ;ree is

° maximal depth that a
tree has

Tree Terminology ggfeined ot bgftﬁ ;ree is

A maximal depth that a
tree has

) © & © ¢
01010 K

height = 3 -

Tree Terminology Summary

Every non-empty tree has a that defines the "top" of the tree.

Every node has 0 or more nodes descended from it. Nodes with no
children are called

Every node in a tree has exactly one node (except for the root node).
A through the tree traverses edges between parents and their children.

The of a node is the number of edges between the root and that node.
Atree's is the number of edges in the longest path through the tree.

Tree Properties

Tree Properties

e Any node in a tree can only have one parent.

Tree Properties

e Any node in a tree can only have one parent.

Tree Properties

e Any node in a tree can only have one parent.

Not a
tree!

Tree Properties

e Any node in a tree can only have one parent.

e The tree cannot have any cycles. That is, there should be no way to make a
complete loop through the tree.

Tree Properties

e Any node in a tree can only have one parent.

e The tree cannot have any cycles. That is, there should be no way to make a
complete loop through the tree.

Tree Properties

e Any node in a tree can only have one parent.

e The tree cannot have any cycles. That is, there should be no way to make a
complete loop through the tree.

olc™

tree!

Announcements

Announcements

e Assignment 5 is due on Tuesday, August 3 at 11:59pm PDT.

O On the short answer, problem 7 asks about 2 sort prototypes. You should pretend that question only
says one!

e Trip’s group OH will be moved From Wednesday, 8/4 to Thursday 8/5, still from
10am-12pm PT
O Trip still has office hours on 8/3 from 9-11am PT. Come thru!
e Assignment 6 will be released on Wednesday and will be be due on Wednesday,
August 11 at 11:59pm PDT. This is a hard deadline — there is no grace period
and no submissions will be accepted after this time.

e The End-quarter Assessment will take place over 3 days from Friday, August 13
to Sunday, August 15. More information will be released soon.

Trees in C++

Binary Trees

e In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

Binary Trees

e In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

e However, when working with trees in computer programs, it is common to
work mostly with

Binary Trees

e In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

e However, when working with trees in computer programs, it is common to
work mostly with

o A is a tree where every node has either 0, 1, or 2 children. No
node in a binary tree can have more than 2 children.

Binary Trees

In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

However, when working with trees in computer programs, it is common to
work mostly with

A is a tree where every node has either 0, 1, or 2 children. No
node in a binary tree can have more than 2 children.

Typically, the two children of a node in a binary tree are referred to as the
and the

Binary Trees

Binary Trees

Binary
Tree!

Binary Trees
0
o
oo ORONONONC
O oloJoENoI0

Binary
Tree! °

Binary Trees

Binary Not a binary
Tree! tree!

Building Trees Programmatically

e To build a tree in C++, we need a new version of the Node struct we've seen
before.

Building Trees Programmatically

e To build a tree in C++, we need a new version of the Node struct we've seen
before.

e In this case, we want each Node to have a data value (like a linked list), but
now we want two pointers, one to the left child, and one to the right child.

Building Trees Programmatically

e To build a tree in C++, we need a new version of the Node struct we've seen
before.

e In this case, we want each Node to have a data value (like a linked list), but
now we want two pointers, one to the left child, and one to the right child.

struct TreeNode {
string data;
TreeNode* left;
TreeNode* right;

}
D

What is a tree in C++7?

A tree is

either... An empty data

structure, or...

A single node
(parent), with zero
or more non-empty
subtrees (children)

What is a tree in C++7?

A tree is

either... An empty tree Coteforrin
represented by NULLPT%
nullptr, or...

A single node
(parent), with zero
or more non-empty
subtrees (children)

What is a tree in C++7?

A tree is

either... An empty tree Coteforrin
represented by NULLPT%
nullptr, or...

"data"

A single TreeNode,
with O, 1, or 2 a t

non-null pointers to ‘ b

other TreeNodes

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;
TreeNode* right;
}

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;
TreeNode* right;
}

Coliformia’ %

NULLPT

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;
TreeNode* right;
)
"pineapple”

Nitier] Wil e

L

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;
TreeNode* right;
}

"pineapple”

Niers| N iers

"coconut"

Niery] itiers

struct TreeNode {

. . string data;
Building Trees Programmatically TreeNode* left;
TreeNode* right;
}
"pineapple”
/. { :dﬁ/ﬁtﬂ;:m

/

"coconut"

Niery] itiers

struct TreeNode {

. . string data;
Building Trees Programmatically TreeNode* left;
TreeNode* right;
}
"pineapple”
/. { :dﬁ/ﬁtﬂ;:m
"coconut”
/ [i

"banana"

Niery] iliers

struct TreeNode {

. . string data;
Building Trees Programmatically TreeNode* left;
TreeNode* right;
}
"pineapple”
/. { :dﬁ/ﬁtﬂ;:m
"coconut"
"banana" "durian”

Niterd] e Niers| i ers

struct TreeNode {
string data;
TreeNode* left;

Building Trees Programmatically TreeNade” left;
reeNode* right;

}
"pineapple”
"coconut" "strawberry"
"banana" "durian"

Nl il e

Nl il e

struct TreeNode {

. . string data;
Building Trees Programmatically TreeNode* left;
TreeNode* right;
}
"pineapple”
_~* ~

/

"coconut"

—

"banana"

Nl i

TN

"durian”

Nl i

~.

"strawberry"

Niller] o~

T~

"taro"

Coliformin” %l(Coliformin”

NULIPTR| NULIPTR

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;
TreeNode* right;
}

"pineapple”

0 |

e ~.

"coconut" "strawberry"

Niller] o~

T~

"banana” "durian” "taro"
NiLer] Wil WiLer] il NiLer] il

Note: Trees do not have to be complete, like heaps. node can have 0, 1, or 2 children.

Let's code it!
buildExampleTree()

Building a Tree Takeaways

e Building a tree is very similar to the process of building a linked list.

e \We create new nodes of the tree by dynamically allocating memory.

e \We integrate these new nodes into the tree by rewiring the left and right
pointers of existing nodes in the tree.

Tree Traversals

Tree Traversals

e Often, we will want to "do something" with each node in a tree. Like linked
lists, we can do so by . With the branching involved, this is
a slightly more involved process than traversing a linked list!

Tree Traversals

e Often, we will want to "do something" with each node in a tree. Like linked
lists, we can do so by . With the branching involved, this is
a slightly more involved process than traversing a linked list!

e There are three main ways to traverse a binary tree:
o Pre-order traversal
o In-order traversal
o Post-order traversal

Tree Traversals

e Often, we will want to "do something" with each node in a tree. Like linked
lists, we can do so by . With the branching involved, this is
a slightly more involved process than traversing a linked list!

e There are three main ways to traverse a binary tree:

o Pre-order traversal
o In-order traversal
o Post-order traversal

e Due to the recursive nature of trees, all of these algorithms are most easily
defined

Pre-order Traversal

e The algorithm for a pre-order traversal is defined as follows:
o "Do something" with the current node
o Traverse the left subtree
o Traverse the right subtree

e For example purposes, let's have our "do something" to be printing the
contents of the current node, which will allow us to print the overall tree.

Let's code It!
preorderPrintTree()

Pre-order Traversal

e The algorithm for a pre-order traversal is defined as follows:
o "Do something" with the current node
o Traverse the left subtree
o Traverse the right subtree

e For example purposes, let's have our "do something" be printing the contents
of the current node, which will allow us to print the overall tree.

e Qutput: pineapple coconut banana durian strawberry taro

In-order Traversal

e The algorithm for an in-order traversal is defined as follows:
o Traverse the left subtree
o "Do something" with the current node
o Traverse the right subtree

Let's code it!
inorderPrintTree()

In-order Traversal

e The algorithm for an in-order traversal is defined as follows:
o Traverse the left subtree
o "Do something" with the current node
o Traverse the right subtree

e Output: banana coconut durian pineapple strawberry taro

e Observation: The output of this traversal gives as all the values in alphabetical
order. Is this a coincidence?
o No! We'll see why tomorrow! (for now, just note that this phenomena is
not guaranteed for all binary trees.)

Post-order Traversal

e The algorithm for a post-order traversal is defined as follows:
o Traverse the left subtree
o Traverse the right subtree
o "Do something" with the current node

Try it yourself!

postorderPrintTree()

Post-order Traversal

e The algorithm for a post-order traversal is defined as follows:
o Traverse the left subtree
o Traverse the right subtree
o "Do something" with the current node

e Output: banana durian coconut taro strawberry pineapple

e Application: Freeing trees! (we'll see this in lecture tomorrow)

Summary

Trees Summary

e Trees allow us to organize information in a linked data structure such that the
distance to any element is short, even if there are many elements.

e Trees organize nodes in a hierarchical manner, where each element contains
connections to children nodes that exist "lower" in the tree.

e There are three main ways to traverse the nodes in a tree, and each type of
traversal visits the nodes of the tree in a distinctly different order.

What's next?

Object-Oriented
Road map Programming

C++ basics

_ arrays
vectors + grids

dynamic memory

stacks + queues management

sets + maps

SESTTULLUL — T ——

real-world
algorithms

Life after
algorithmic recur@8S106B!

testing analysis problem-solving

Diagnostic

Binary Search Trees

2 | 4

6

10

14

