
Using Abstractions: 
Breadth-First Search

What is a tradition that’s special to you?
(put your answers in the chat)







vectors + grids

    stacks + queues

    sets + maps

Object-Oriented 
Programming

      arrays

      dynamic memory    
        management

linked data structures

algorithmic 
analysistesting

recursive 
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world 
algorithms

Core 
Tools

User/client
Implementation

Roadmap graphic courtesy of Nick Bowman & Kylie Jue 



Object-Oriented 
Programming

      arrays

      dynamic memory    
        management

linked data structures

algorithmic 
analysistesting

recursive 
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world 
algorithms

Core 
Tools

Implementation

vectors + grids

    stacks + queues

    sets + maps

User/client



Object-Oriented 
Programming

      arrays

      dynamic memory    
        management

linked data structures

algorithmic 
analysistesting

recursive 
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world 
algorithms

Core 
Tools

Implementation

vectors + grids

    stacks + queues

    sets + maps

User/client



Today’s 
question

How can we use the 
unique properties of 
different abstractions to 
solve problems?



Today’s 
topics

1. Review

2. Implementing Counting 
Sort

3. Implementing 
Breadth-First Search



Breadth-First Search Algorithm



Review

sets and maps



What is a set?

● A set is a collection of elements                                                                                 
with no duplicates.

● Sets are faster than ordered data 
structures like vectors – since there are no duplicates, it’s faster for them to 
find things.
○ (Later in the quarter we’ll learn about the details of the underlying 

implementation that makes this abstraction efficient.)
○ We’ll formally define “faster” on Thursday.

● Sets don’t have indices!



What is a map?

● A map is a collection                                                                                                 
of key/value pairs, and the key                                                                                           
is used to quickly find the value.

● A map is an alternative to an ordered data structure, where the “indices” no 
longer need to be integers.



Ordered ADTs

Elements accessible by indices:

● Vectors (1D)
● Grids (2D)

Elements not accessible by indices:

● Queues (FIFO)
● Stacks (LIFO)

Unordered ADTs

● Sets (elements unique)
● Keys (keys unique)

Useful when numerical ordering of 
data isn’t optimal



Activity:
Counting Sort



Counting Sort

● Sorting is a fundamental topic in computer science and one that we will revisit 
in more depth later this quarter

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort

● Sorting is a fundamental topic in computer science and one that we will revisit 
in more depth later this quarter

● For now, let's consider this question: how would you efficiently sort all the 
letters in a word in alphabetical order? 

○ How can we take advantage of some of the data structures we've recently learned about to 
meaningfully structure the data that we want to sort?

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort

● Sorting is a fundamental topic in computer science and one that we will revisit 
in more depth later this quarter

● For now, let's consider this question: how would you efficiently sort all the 
letters in a word in alphabetical order? 

○ How can we take advantage of some of the data structures we've recently learned about to 
meaningfully structure the data that we want to sort?

● Idea: If we can tally up how many times each of the letters from 'a' to 'z' shows 
up, we can then build a new string composed of the correct number of 'a's, 
followed by the correct number of 'b's, … etc. 

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz



Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Mission 
Accomplished!



Counting Sort Pseudocode

Example and slides taken from a slide deck by Keith Schwarz

● Loop over the word and build a frequency map of 
all letters that appear in the original string

● Loop through all letters from 'a' to 'z' and build up 
a new string with the right amount of each letter

● Return the newly generated string



pseudocode 
before implementing 
the algorithm 



Counting Sort Pseudocode

Example and slides taken from a slide deck by Keith Schwarz

● Loop over the word and build a frequency map of 
all letters that appear in the original string

● Loop through all letters from 'a' to 'z' and build up 
a new string with the right amount of each letter

● Return the newly generated string



Provided Code

Example and slides taken from a slide deck by Keith Schwarz

string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {

    }
    return sortedString;
}



-  Loop over the word and build a frequency map                                    
   of all letters that appear in the original string
-  Loop through all letters from 'a' to 'z' and build up                                          
   a new string with the right amount of each letter
string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
        /* TODO: Generate pseudocode to complete the algorithm! */
        /* 
    }
    return sortedString;
}



Loop through all letters from 'a' to 'z' and build up                                 
a new string with the right amount of each letter

Example and slides taken from a slide deck by Keith Schwarz

string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
        /* TODO: Generate pseudocode 
           to complete the algorithm! */
    }
    return sortedString;
}



Loop through all letters from 'a' to 'z' and build up                                 
a new string with the right amount of each letter

string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
      /* TODO: Generate pseudocode to complete the algorithm! */
      /* Use ch as key into the freq map & get associated value. */
    
    }
    return sortedString;
}



Loop through all letters from 'a' to 'z' and build up                          
a new string with the right amount of each letter

string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
       /* TODO: Generate pseudocode to complete the algorithm! */
       /* Use ch as key into the freq map & get associated value. */
       /* Add ch to sortedString as many times as that value. */
    }
    return sortedString;
}



string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
       /* Use ch as key into the freq map & get associated value. */
       /* Add ch to sortedString as many times as that value. */
    }
    return sortedString;
}



Counting Sort Code

string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        // taking advantage of map auto-insertion!
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
        /* Use ch as key into the freq map and get associated value. */
        /* Add ch to sortedString as many times as that value. */
        for (int i = 0; i < freqMap[ch]; i++) {
           sortedString += charToString(ch);
        }
    }
    return sortedString;
}



Counting Sort Code

string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        // taking advantage of map auto-insertion!
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
        /* Use ch as key into the freq map and get associated value. */
        /* Add ch to sortedString as many times as that value. */
        for (int i = 0; i < freqMap[ch]; i++) {
           sortedString += charToString(ch);
        }
    }
    return sortedString;
}



Loop through all letters from 'a' to 'z' and build up                                 
a new string with the right amount of each letter

string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
        /* Check if the freq map contains the key ch */ 
        /* If so, get associated value for ch key from freq map. */
        /* Add ch to sortedString as many times as that value. */
    }
    return sortedString;
}



Counting Sort Code
string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        // taking advantage of map auto-insertion!
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
        /* Check if the freq map contains the key ch */ 
        if (freqMap.containsKey(ch)) {
            /* If so, get associated value for ch key from freq map. */
              /* Add ch to sortedString as many times as that value. */
             for (int i = 0; i < freqMap[ch]; i++) {
                sortedString += charToString(ch);
             }
        }
    }
    return sortedString;
}



Counting Sort Code

Example and slides taken from a slide deck by Keith Schwarz

string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        // taking advantage of map auto-insertion!
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
        if (freqMap.containsKey(ch)) {
            for (int i = 0; i < freqMap[ch]; i++) {
                sortedString += charToString(ch);
            }
        }
    }
    return sortedString;
}

This check isn't strictly required, but 
it does avoid unnecessary things being 
added to the map via auto-insertion



Counting Sort Code

Example and slides taken from a slide deck by Keith Schwarz

string countingSort(string s) {
    Map<char, int> freqMap;
    for (char ch: s) {
        // taking advantage of map auto-insertion!
        freqMap[ch] = freqMap[ch] + 1;
    }

    string sortedString;
    for (char ch = 'a'; ch <= 'z'; ch++) {
        if (freqMap.containsKey(ch)) {
            for (int i = 0; i < freqMap[ch]; i++) {
                sortedString += charToString(ch);
            }
        }
    }
    return sortedString;
}



Challenge for home: 

What other types of data could you efficiently sort in 
this manner?



How can we use the unique 
properties of different 
abstractions to solve 

problems?



Examples of interesting problems 
to solve using ADTs
● Simulate potential impacts of flooding on a topographical landscape (how does 

water flow outwards from a source and settle into the surrounding areas)
● Generate simulated text in the style of a certain author. Similarly, do textual 

analysis to determine who the author of a provided piece of text was.
● Spell check and autocomplete for a word document editor
● Manage information about the natural landmarks and state parks                         

to help tourists plan their trip to the state
● Develop a ticketing management system for a stadium
● Aggregate and analyze reviews for an online shopping website
● Solve fun puzzles



Examples of interesting problems to solve using 
ADTs
● Simulate potential impacts of flooding on a topographical landscape (how does 

water flow outwards from a source and settle into the surrounding areas)
● Generate simulated text in the style of a certain author. Similarly, do textual 

analysis to determine who the author of a provided piece of text was.
● Spell check and autocomplete for a word document editor
● Manage information about the natural landmarks and state parks in California 

to help tourists plan their trip to the state
● Develop a ticketing management system for Stanford Stadium
● Aggregate and analyze reviews for an online shopping website
● Solve fun puzzles



Word Ladders



start word

ending word



g

h



g

b

h



g

b

a

h



g

b

a

t

h



g

b

a

t

r

h



g

b

a

t

r

h



g

b

a

t

r

h

How can we come up 
with an algorithm to 
generate these word 
ladders?



Word Ladder Generation First Attempt

● Given a start word and a target word, a natural place to start would be to 
model how a human might attempt to solve this problem



Word Ladder Generation First Attempt

● Given a start word and a target word, a natural place to start would be to 
model how a human might attempt to solve this problem

○ Start at the start word
○ Make an educated guess about what letter to change first
○ Modify that letter to get to a new English word
○ From there, make another educated guess about which letter to change and modify that letter
○ Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely) 
○ If you hit a dead end, start over again, taking a different first step



Word Ladder Generation First Attempt

● Given a start word and a target word, a natural place to start would be to 
model how a human might attempt to solve this problem

○ Start at the start word
○ Make an educated guess about what letter to change first
○ Modify that letter to get to a new English word
○ From there, make another educated guess about which letter to change and modify that letter
○ Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely) 
○ If you hit a dead end, start over again, taking a different first step

● What are the issues with this approach?
○ Requires intuition – does a computer have intuition? 
○ Unorganized – no organized strategy for the exploration 
○ No guarantee that you'll ever find a solution!



Breadth-First Search (BFS)



Breadth-First Search 

● We need a structured way to explore words that are "adjacent" to one another 
(one letter difference between the two of them)



Breadth-First Search 

● We need a structured way to explore words that are "adjacent" to one another 
(one letter difference between the two of them)

● What's the simplest possible word ladder we could find?
○ If the words are only one letter different from one another (pig and fig), then finding the word 

ladder is relatively easy – we look at all words that are one letter away from the current word



Breadth-First Search 

● We need a structured way to explore words that are "adjacent" to one another 
(one letter difference between the two of them)

● What's the simplest possible word ladder we could find?
○ If the words are only one letter different from one another (pig and fig), then finding the word 

ladder is relatively easy – we look at all words that are one letter away from the current word

● What's the next simplest possible word ladder we could find?
○ If the word ladder requires two steps, then we can break down the problem into the problem of 

exploring one step away from all the words that are one step away from the starting word



Breadth-First Search 

● We need a structured way to explore words that are "adjacent" to one another 
(one letter difference between the two of them)

● What's the simplest possible word ladder we could find?
○ If the words are only one letter different from one another (pig and fig), then finding the word 

ladder is relatively easy – we look at all words that are one letter away from the current word

● What's the next simplest possible word ladder we could find?
○ If the word ladder requires two steps, then we can break down the problem into the problem of 

exploring one step away from all the words that are one step away from the starting word

● Important observation: In order to keep our search organized, we first 
explore all word ladders of "length" 1 before we explore any word ladders of 
"length" 2, and so on.



Breadth-First Search 
Example



Breadth-First Search Example

● Let's try to apply this approach to find a word ladder starting at the word "map" 
and ending at the word "way"



Breadth-First Search Example

map

start: map
destination: way



Breadth-First Search Example

map

start: map
destination: way

0 steps away



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

may



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

maynap



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

maynap Note: For the sake of 
brevity/demonstration, we 
will not enumerate all 
possible words that are 1 
step away



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

maynap



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

Observation: 2 
steps away from 
"map" is really just 1 
step away from any 
of its neighbors 



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

map



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

map

Visiting a word we've 
already been at 
before is basically like 
going backwards in 
our search. We want 
to avoid this at all 
costs!



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

map

Idea: Keep track of a 
collection of visited 
words, and don't 
double visit



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

man



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

man



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

way



Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

way

Success! We have 
found a valid word 
ladder 
map -> may -> way



Formalizing 
Breadth-First Search 
(BFS)



Breadth-First Search Data Structures

We need…

1)  A data structure to represent (partial word) ladders
○ Desired characteristics: can easily access the most recent word added to the word ladder



Breadth-First Search Data Structures

We need…

1)  A data structure to represent (partial word) ladders
○ Desired characteristics: can easily access the most recent word added to the word ladder

2) A data structure to store all the partial word ladders that we have generated     
so far and have yet to explore

○ Desired characteristics: can maintain an ordering of partial word ladders                                                                     
so that all ladders of a certain length get explored before ladders of longer length get explored



Breadth-First Search Data Structures

We need…

1)  A data structure to represent (partial word) ladders
○ Desired characteristics: can easily access the most recent word added to the word ladder

2)  A data structure to store all the partial word ladders that we have generated    
so far and have yet to explore

○ Desired characteristics: can maintain an ordering of partial word ladders                                                                     
so that all ladders of a certain length get explored before ladders of longer length get explored

3)  A data structure to keep track of all the words that we've explored so far,        
so that we avoid getting stuck in loops

○ Desired characteristics: can check quickly whether a word has been seen before



Breadth-First Search Data Structures

We need…

1)  A data structure to represent (partial word) ladders
○ Desired characteristics: can easily access the most recent word added to the word ladder

2)  A data structure to store all the partial word ladders that we have generated   
so far and have yet to explore

○ Desired characteristics: can maintain an ordering of partial word ladders                                                                     
so that all ladders of a certain length get explored before ladders of longer length get explored

3)  A data structure to keep track of all the words that we've explored so far,        
so that we avoid getting stuck in loops

○ Desired characteristics: can check quickly whether a word has been seen before



Breadth-First Search Data Structures

We need…

1)  A data structure to represent (partial word) ladders

○ Stack<string>
2)  A data structure to store all the partial word ladders that we have generated    
so far and have yet to explore

○ Desired characteristics: can maintain an ordering of partial word ladders                                                                     
so that all ladders of a certain length get explored before ladders of longer length get explored

3)  A data structure to keep track of all the words that we've explored so far, so 
that we avoid getting stuck in loops

○ Desired characteristics: can check quickly whether a word has been seen before



Breadth-First Search Data Structures

We need…

1)  A data structure to represent (partial word) ladders

○ Stack<string>
2)  A data structure to store all the partial word ladders that we have generated    
so far and have yet to explore

○ Queue<Stack<string>>
3)  A data structure to keep track of all the words that we've explored so far,         
so that we avoid getting stuck in loops

○ Desired characteristics: can check quickly whether a word has been seen before



Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders

○ Stack<string>
● A data structure to store all the partial word ladders that we have generated so 

far and have yet to explore

○ Queue<Stack<string>>
● A data structure to keep track of all the words that we've explored so far, so 

that we avoid getting stuck in loops

○ Set<string>



Breadth-First Search Pseudocode



Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the 
queue



Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the 
queue
While the queue is not empty



Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the 
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder



Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the 
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder
Generate all "neighboring" words that are valid English words and one 
letter away from the current word
Loop over all neighbor words 



Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the 
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder
Generate all "neighboring" words that are valid English words and one 
letter away from the current word
Loop over all neighbor words 

If the neighbor hasn't yet been visited



Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the 
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder
Generate all "neighboring" words that are valid English words and one 
letter away from the current word
Loop over all neighbor words 

If the neighbor hasn't yet been visited
Create a copy of the current ladder 
Add the neighbor to the top of the new ladder and mark it visited
Add the new ladder to the back of the queue of partial ladders



Implementing 
Breadth-First Search
[Qt Creator]



Implementing 
Breadth-First Search  

We hope that you find this to be a helpful resource when working on 
Assignment 2. However, we do not encourage trying to copy the code as a 
starting point. The problems are distinctly different, and you will benefit from 
explicitly developing your own problem-specific pseudocode first.



Announcements



Announcements

• Assignment 2 was released last night. It will be due at the end of the day on 
Wednesday, July 7.

• YEAH will be tomorrow, 7/1 at 7pm PT. Link is on the course website on the 
zoom info page.

• Check out the A2 warmup to ensure that your Qt debugger works nicely with 
the Stanford C++ collections before starting on the assignment.

• This assignment is a step-up in complexity compared to A1 – get started early!



Goals for this Course

Learn how to model and solve complex problems with 
computers.

● Explore common abstractions for representing 
problems.

● Harness recursion and understand how to think 
about problems recursively.

● Quantitatively analyze different approaches for 
solving problems.



What’s next?



vectors + grids

    stacks + queues

    sets + maps

Object-Oriented 
Programming

      arrays

      dynamic memory    
        management

linked data structures

testing
recursive 

problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world 
algorithms

User/client
Implementation

algorithmic 
analysis

Core 
Tools



Big O and Algorithmic Analysis


