Using Abstractions:
Breadth-First Search

What is a tradition that’s special to you?
(put your answers in the chat)

S b

-

ey

Object-Oriented
Roadmap Programming

Roadmap graphic courtesy of Nick Bowman & Kylie Jue

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Diagnostic

Object-Oriented
Roadmap Programming

C++ basics

\

arrays

dynamic memory
management

linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Object-Oriented
Roadmap Programming

C++ basics

\

arrays

dynamic memory
management

linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

How can we use the

TOday’S unique properties of
guestion

different abstractions to
solve problems?

Review

Today'’s
topics

Implementing Counting

Sort

Implementing
Breadth-First Search

Breadth-First Search Algorithm

Review

sets and maps

What is a set? "the”

neen]] he |
]| I |||f 1) by"
down" "of "them"

||.tO|| “from" "in

e A setis a collection of elements

with no duplicates. |

e Sets are faster than ordered dat.
structures like vectors — since there are no duplicates, it’s faster for them to
find things.
o (Later in the quarter we’ll learn about the details of the underlying
implementation that makes this abstraction efficient.)
o We’ll formally define “faster” on Thursday.

e Sets don’t have indices!

What is @a map?

'86/7-5309"

e A map is a collection ulie” '866-2233"
of key/value pairs, and the key Hie / C "685-6232"
is used to quickly find the value. "488-0312"

e A map is an alternative to an ordered data structure, where the “indices” no
longer need to be integers.

Ordered ADTs Unordered ADTs

Elements accessible by indices: e Sets (elements unique)

e Keys (keys unique
e Vectors (1D) s (key que)

e Grids (2D) Q

Elements not accessible by indices: Useful when namerical arc(eriug of

e Queues (FIFO) data icnt optimal

e Stacks (LIFO)

Activity:
Counting Sort

Counting Sort

e Sorting is a fundamental topic in computer science and one that we will revisit
in more depth later this quarter

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort

e Sorting is a fundamental topic in computer science and one that we will revisit
in more depth later this quarter

e For now, let's consider this question: how would you efficiently sort all the

letters in @ word in alphabetical order?

o How can we take advantage of some of the data structures we've recently learned about to
meaningfully structure the data that we want to sort?

le and ¢lidec taken from a clide deck by Keith Schwarz

Counting Sort

e Sorting is a fundamental topic in computer science and one that we will revisit
in more depth later this quarter

e For now, let's consider this question: how would you efficiently sort all the

letters in @ word in alphabetical order?

o How can we take advantage of some of the data structures we've recently learned about to
meaningfully structure the data that we want to sort?

e Idea: If we can tally up how many times each of the letters from 'a' to 'z' shows
up, we can then build a new string composed of the correct number of 'a's,
followed by the correct number of 'b's, ... etc.

le and ¢lidec taken from a clide deck by Keith Schwarz

Counting Sort Example

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

b

a

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

b

aln

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

a

%

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

a

*

b

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

b

anana

*

b

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

b

anana

*

al 1l
b
1etferFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

b

a

=

=

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example
b|a

=

oo
=

3
=

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blan

oW
=

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blajnlajn|a

al 2
b 1
nl 1
iéttefFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blajnjla n|a

al 2
b 1
n| 2
letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

banan#

al 2
b| 1
n| 2
letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example
blajnjla/n|a

a 3
b
n [
letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blalnla/n/a

al 3
b 1
n| 2
letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blalnla/n/a

al 3
b 1
n| 2
letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blalnan a

N

al 3
b 1
n| 2
letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blalnan a

4 alala
m) a|l 3

b [

n| 2

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blalnan a

aalalb
al 3
mp b| 1
n| 2
letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blalnan a

w

om
=

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blalnan a

w

om
=

letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Example

blalnan a

aaab/nn

al 3
b [
Micsion
N [
Accom,b/ished./
letterFreq

ple and clidec taken from a clide deck by Keith Schwarz

Counting Sort Pseudocode

Loop over the word and build a frequency map of
all letters that appear in the original string

Loop through all letters from 'a' to 'z' and build up
a new string with the right amount of each letter
Return the newly generated string

ple and clidec taken from a clide deck by Keith Schwarz

pseudocode
before implementing
the algorithm

Counting Sort Pseudocode

e Loop over the word and build a frequency map of
all letters that appear in the original string
e Loop through all letters from 'a’' to 'z' and

e Return the newly generated string

ple and clidec taken from a clide deck by Keith Schwarz

Provided Code

string countingSort(string s
Map<char, int> fregMap
for (char ch: s
fregMap|ch fregqMap|ch 1

string sortedString
for (char ch 'a'; ch 'z'; ch

return sortedString;

le and ¢lidec taken from a clide deck by Keith Schwarz

- Loop over the word and build a frequency map
of all letters that appear in the original string
- Loop through all letters from 'a' to 'z' and build up
a new string with the right amount of each letter
string countingSort(string s
Map<char, int> fregMap

for (char ch: s
fregqMap|ch fregqMap|ch 1

string sortedString
for (char ch 'a'; ch 'z'; ch

return sortedString;

Loop through all letters from 'a' to 'z' and build up
a new string with the right amount of each letter

string countingSort(string s
Map<char, int> freqMap
for (char ch: s
freqMap | ch freqMap | ch 1

string sortedString
for (char ch 'a'; ch 'z'; ch

return sortedString;

ple and clidec taken from a clide deck by Keith Schwarz

Loop through all letters from 'a' to 'z' and build up
a new string with the right amount of each letter

string countingSort(string s
Map<char, int> freqMap
for (char ch: s
fregqMap|ch fregqMap|ch 1

string sortedString
for (char ch 'a'; ch 'z'; ch

return sortedString;

Loop through all letters from 'a' to 'z' and build up
a new string with the right amount of each letter

string countingSort(string s
Map<char, int> fregMap
for (char ch: s
fregqMap|ch fregqMap|ch 1

string sortedString

for (char ch 'a' ch 'z! ch

return sortedString;

string countingSort(string s
Map<char, int> freqMap
for (char ch: s
fregqMap|ch fregqMap|ch 1

string sortedString

for (char ch 'a' ch 'z! ch

return sortedString;

Counting Sort Code

string countingSort(string s
Map<char, int> fregMap
for (char ch: s
// taking advantage of map auto-insertion!
fregqMap | ch fregMap|ch 1

string sortedString
for (char ch 'a'; ch 'z'; ch

for (int i 0, 1 fregMap|ch i
sortedString charToString(ch

return sortedString;

Counting Sort Code

string countingSort(string s
Map<char, int> fregMap
for (char ch: s
// taking advantage of map auto-insertion!
fregqMap | ch fregMap|ch 1

string sortedString
for (char ch 'a'; ch 'z'; ch

for (int i 0, 1 fregMap|ch i
sortedString charToString(ch

return sortedString;

Loop through all letters from 'a' to 'z' and build up
a new string with the right amount of each letter

string countingSort(string s
Map<char, int> fregMap
for (char ch: s
fregMap | ch fregMap|ch 1

string sortedString
for (char ch 'a'; ch 'z'; ch

return sortedString;

Counting Sort Code

string countingSort(string s
Map<char, int> fregMap
for (char ch: s
// taking advantage of map auto-insertion!
fregMap|ch fregMap|/ch 1

string sortedString
for (char ch 'a'; ch 'z'; ch
if (fregMap.containsKey (ch

for (int i 0, i fregMap|ch i
sortedString charToString(ch

return sortedString;

Counting Sort Code

string countingSort(string s
Map<char, int> fregMap
for (char ch: s

fregMap|ch fregMap|ch 1

Thic check icn't ctrictly required, but

string sortedString it does avoid unnececcary things being

for (char ch 'a'; ch 'z'; ch
if (fregMap.containsKey (ch
for (int 1 0, 1 fregMap|ch i
sortedString charToString(ch

added to the map via avto-insertion

return sortedString;

le and ¢lidec taken from a clide deck by Keith Schwarz

Counting Sort Code

string countingSort(string s
Map<char, int> fregMap
for (char ch: s
// taking advantage of map auto-insertion!
fregMap|ch fregMap|ch 1

string sortedString
for (char ch 'a'; ch 'z'; ch
if (fregMap.containsKey (ch
for (int i 0, 1 fregMap|ch i
sortedString charToString(ch

return sortedString;

le and ¢lidec taken from a clide deck by Keith Schwarz

Challenge for home:

What other types of data covld you efficiently cort in

thic manner?

How can we use the unique
properties of different
abstractions to solve

problems?

Examples of interesting problems
to solve using ADTs

e Simulate potential impacts of flooding on a topographical landscape (how does
water flow outwards from a source and settle into the surrounding areas)

e Generate simulated text in the style of a certain author. Similarly, do textual
analysis to determine who the author of a provided piece of text was.

e Spell check and autocomplete for a word document editor

e Manage information about the natural landmarks and state parks
to help tourists plan their trip to the state

e Develop a ticketing management system for a stadium

e Aggregate and analyze reviews for an online shopping website

e Solve fun puzzles

Examples of interesting problems to solve using
AD]Js . . |
e Simulate potential impacts of flooding on a topographical landscape (how does
water flow outwards from a source and settle into the surrounding areas)
e Generate simulated text in the style of a certain author. Similarly, do textual
analysis to determine who the author of a provided piece of text was.
e Spell check and autocomplete for a word document editor
e Manage information about the natural landmarks and state parks in California
to help tourists plan their trip to the state
e Develop a ticketing management system for Stanford Stadium
e Aggregate and analyze reviews for an online shopping website

Word Ladders

{ Word Ladder)

Write the missing letler for each word, As you go down the ladder,

change one letter to show how the words connec!

~=)

\ ctart word

/\ ending word

{ Word Ladder)

Write the missing letler for each word, As you go down the ladder,
change one letter to show how the words connect
()
rewwey
| |
| 1
1 |
1 1
LY
4)
s
1 1
1 !
| {
1 1
bmwmnd
C)
 adadaded |
| 1
' x g u
|]
& o e R |
() e
hadad g |
1 1
1 |
1 1
1)
()| ——F
toneey < - .
1 1 T P
e)
1 1 W 4 |
I I r‘);’h 8
] > £27)}
== () M
e re———v
1 1
== 2N !
= ___/ 0, i 1
& 1 {
/ Ao d
U i

{ Word Ladder)

Write the missing letler for each word, As you go down the ladder,
change one letter 1o show how 1he words connec!

p 0

4 J

JEp——

r Uig

-

[4)
g
1 |
blug
ot
4)
oi g
(e ,
ba |
ai |
1 1
]]
()| =%
S .|. 05 e
o 3
1 1 " 4 \
S r}t"’;f.»“:".
() M4
oy 1,
'h:d
i i
I |
|4)

Supor fTeochar Vionshood « www. aupoarteachenworkshogts.com

{ Word Ladder)

Write the missing letler for each word, As you go down the ladder,
change one letter 1o show how 1he words connec!

p 0

(T)
r U8
[4 — ‘----‘)
b:'U Q
1 1
[4 t--_-"____‘)
D C)
4 ‘_-...4,‘”_“‘ "
Ba; |
1 d Bl
—_— e
hia f
| |
|4 =)

Supor fTeochar Vionshood « www. aupoarteachenworkshogts.com

{ Word Ladder)

Write the missing letler for each word, As you go down the ladder,
change one letter 1o show how 1he words connec!

p 0

[4)
sy
] 1
r U 8.
R
[4)
| |
biU (
[4 — —)
bia
bait
| |
a:t
vl
()| =%
—1a 1=
E ‘: O rt’..;—‘/\’:“"\,
o | ~=
i 1
‘hia t
8 —)

Supor fTeochar Vionshood « www. aupoarteachenworkshogts.com

{ Word Ladder)

Write the missing letler for each word, As you go down the ladder,
change one letter to show how 1he words connect

] ()

¢)

P ———

ruv s

b -

b Ug

-—wwnd

P - - -

pp———

\J :
' h
i ' |
|]

] i |

N - -
() S
pm—m—y
1 1
| |
1 1
1 !
4 -~ 2 ¢
To-e .
I
~ N
-/ |

,2.; :?:Ez“:“
) et/

Supor Toochor Vionshoot « wwwv aporteachensorishoots.com

{ Word Ladder)

Write the missing letler for each word, As you go down the ladder,
change one letter to show how 1he words connect

] ()

[4 J
rem——y
1 1
1 1
1 |
1 |
A mnd
[4)
Feaamang
1 |
1 |
| |
1 1
bmwmnd
4 J)
rm——— '
' h
i a ' |
|]
t i | =]
B e w
i) ="

P ———

b ait

g

{ Word Ladder)

Write the missing letler for each word, As you go down
change one letter to show how the words connect

i
e
(]
)

the: laddes,

S

1] 4

How can we come up

with an a./gokit/m« to

generate thece word

ladders?

pal

0% + W sUporteachenworksho

Word Ladder Generation First Attempt

e Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem

Word Ladder Generation First Attempt

e Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem

o O O O O O

Start at the start word

Make an educated guess about what letter to change first

Modify that letter to get to a new English word

From there, make another educated guess about which letter to change and modify that letter
Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely)
If you hit a dead end, start over again, taking a different first step

Word Ladder Generation First Attempt

e Given a start word and a target word, a natural place to start would be to

model how a human might attempt to solve this problem

Start at the start word

Make an educated guess about what letter to change first

Modify that letter to get to a new English word

From there, make another educated guess about which letter to change and modify that letter
Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely)
If you hit a dead end, start over again, taking a different first step

e What are the issues with this approach?

o Requires intuition — does a computer have intuition?
o Unorganized — no organized strategy for the exploration
o No guarantee that you'll ever find a solution!

o O O O O O

Breadth-First Search (BFS)

Breadth-First Search

e We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

Breadth-First Search

e We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

e What's the simplest possible word ladder we could find?

o Ifthe words are only one letter different from one another (pig and fig), then finding the word
ladder is relatively easy — we look at all words that are one letter away from the current word

Breadth-First Search

e We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

e What's the simplest possible word ladder we could find?
o Ifthe words are only one letter different from one another (pig and fig), then finding the word
ladder is relatively easy — we look at all words that are one letter away from the current word
e What's the next simplest possible word ladder we could find?

o Ifthe word ladder requires two steps, then we can break down the problem into the problem of
exploring one step away from all the words that are one step away from the starting word

Breadth-First Search

e We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

e What's the simplest possible word ladder we could find?

o Ifthe words are only one letter different from one another (pig and fig), then finding the word
ladder is relatively easy — we look at all words that are one letter away from the current word

e What's the next simplest possible word ladder we could find?

o Ifthe word ladder requires two steps, then we can break down the problem into the problem of
exploring one step away from all the words that are one step away from the starting word

e Important observation: In order to keep our search organized, we first
explore all word ladders of "length" 1 before we explore any word ladders of
"length" 2, and so on.

Breadth-First Search
Example

Breadth-First Search Example

e Let's try to apply this approach to find a word ladder starting at the word "map"
and ending at the word "way"

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

rap

start: map
destination: way

Breadth-First Search Example

man

7

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

_ start: map
Breadth-First Search Example destination: way

Note: For the sake of
brevity/demonstration, we
will not enumerate all
possible words that are 1
step away

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

_ start: map
Breadth-First Search Example destination: way

Observation: 2
steps away from
"map" is really just 1
step away from any
of its neighbors

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Visiting a word we've
already been at
before is basically like
going backwards in
our search. We want
to avoid this at all
costs!

_ start: map
Breadth-First Search Example destination: way

|dea: Keep track of a
collection of visited
words, and don't
double visit

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map

Breadth-First Search Example destination: way

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map

Breadth-First Search Example destination: way

Success! We have
found a valid word
ladder

map -> may -> way

Formalizing
Breadth-First Search
(BFS)

Breadth-First Search Data Structures

We need...

1) A data structure to represent (partial word) ladders
o Desired characteristics: can easily access the most recent word added to the word ladder

Breadth-First Search Data Structures

We need...

1) A data structure to represent (partial word) ladders
o Desired characteristics: can easily access the most recent word added to the word ladder

2) A data structure to store all the partial word ladders that we have generated

so far and have yet to explore

o Desired characteristics: can maintain an ordering of partial word ladders
so that all ladders of a certain length get explored before ladders of longer length get explored

Breadth-First Search Data Structures

We need...

1) A data structure to represent (partial word) ladders
o Desired characteristics: can easily access the most recent word added to the word ladder

2) A data structure to store all the partial word ladders that we have generated
so far and have yet to explore

o Desired characteristics: can maintain an ordering of partial word ladders
so that all ladders of a certain length get explored before ladders of longer length get explored

3) A data structure to keep track of all the words that we've explored so far,

so that we avoid getting stuck in loops
o Desired characteristics: can check quickly whether a word has been seen before

Breadth-First Search Data Structures

We need...

1) A data structure to represent (partial word) ladders
o Desired characteristics: can easily access the most recent word added to the word ladder

2) A data structure to store all the partial word ladders that we have generated
so far and have yet to explore

o Desired characteristics: can maintain an ordering of partial word ladders
so that all ladders of a certain length get explored before ladders of longer length get explored

3) A data structure to keep track of all the words that we've explored so far,

so that we avoid getting stuck in loops
o Desired characteristics: can check quickly whether a word has been seen before

Breadth-First Search Data Structures

We need...

1) A data structure to represent (partial word) ladders
0 Stack<string>

2) A data structure to store all the partial word ladders that we have generated

so far and have yet to explore

o Desired characteristics: can maintain an ordering of partial word ladders
so that all ladders of a certain length get explored before ladders of longer length get explored

3) A data structure to keep track of all the words that we've explored so far, so

that we avoid getting stuck in loops
o Desired characteristics: can check quickly whether a word has been seen before

Breadth-First Search Data Structures

We need...

1) A data structure to represent (partial word) ladders
0 Stack<string>
2) A data structure to store all the partial word ladders that we have generated
so far and have yet to explore
O Queue<Stack<string>>
3) A data structure to keep track of all the words that we've explored so far,

so that we avoid getting stuck in loops
o Desired characteristics: can check quickly whether a word has been seen before

Breadth-First Search Data Structures

We need...

e A data structure to represent (partial word) ladders
0 Stack<string>
e A data structure to store all the partial word ladders that we have generated so
far and have yet to explore
O Queue<Stack<string>>
e A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops
O Set<string>

Breadth-First Search Pseudocode

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

While the queue is not empty

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

While the queue is not empty
Remove the next partial ladder from the queue

Set the current search word to be the word at the top of the ladder

If the current word is the destination, then return the current ladder

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

While the queue is not empty
Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder

Generate all "neighboring" words that are wvalid English words and one
letter away from the current word

Loop over all neighbor words

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

While the queue is not empty
Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder

Generate all "neighboring" words that are wvalid English words and one
letter away from the current word

Loop over all neighbor words

If the neighbor hasn't yet been visited

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

While the queue is not empty
Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder

Generate all "neighboring" words that are valid English words and one
letter away from the current word

Loop over all neighbor words
If the neighbor hasn't yet been visited
Create a copy of the current ladder
Add the neighbor to the top of the new ladder and mark it visited
Add the new ladder to the back of the queue of partial ladders

Implementing
Breadth First Search

[Qt Creato

Implementing
Breadth-First Search

We hope that you find this to be a helpful resovrce when working on
Acsignment 2. However, we do not encovrage Trying to copy the code a¢ a
ctarting point. The probleme are dictinctly different, and you will benefit from
explicitly developing your own problem-cpecific pseudocode first.

Announcements

Announcements

* Assignment 2 was released last night. It will be due at the end of the day on
Wednesday, July 7.

* YEAH will be tomorrow, 7/1 at 7pm PT. Link is on the course website on the
zoom info page.

* Check out the A2 warmup to ensure that your Qt debugger works nicely with
the Stanford C++ collections before starting on the assignment.

* This assignment is a step-up in complexity compared to A1 — get started early!

Goals for this Course

Learn how to model and solve complex problems with
computers.

. Explore common abstractions for representing
problems.

. Harness recursion and understand how to think
about problems recursively.

. Quantitatively analyze different approaches for
solving problems.

What’s next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
testing problem-solving

Diagnostic

Big O and Algorithmic Analysis

Time

O(log n)

0(1)

Data Input

