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Section Handout 4

Problem One: Weights and Balances (Courtesy of Eric Roberts)

I am the only child of parents who weighed,
measured, and priced everything; for whom
what could not be weighed, measured, and
priced had no existence.

—Charles Dickens, Little Dorrit, 1857

In Dickens’s time, merchants measured many commodities using weights and a two-pan balance — a
practice that continues in many parts of the world today. If you are using a limited set of weights, how -
ever, you can only measure certain quantities accurately.

For example, suppose that you have only two weights: a 1-ounce weight and a 3-ounce weight. With

these you can easily measure out 4 ounces, as shown:
i
A

It’s more interesting to discover that you can also measure out 2 ounces by shifting the 1-ounce weight
to the other side, as follows:

A a
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A

s

Write a recursive function
bool isMeasurable(int target, const Vector<int>& weights)

that determines whether it is possible to measure out the desired target amount with a given set of
weights, which is stored in the vector weights.

As an example, the function call
isMeasurable(2, { 1, 3 })

should return true because it is possible to measure out two ounces using the sample weight set as illus-
trated in the preceding diagram. On the other hand, calling

isMeasurable(5, { 1, 3 })

should return false because it is impossible to use the 1- and 3-ounce weights to add up to 5 ounces.
However, the call

isMeasurable(6, { 1, 3, 7 })

should return true: you can measure the six-ounce weight by placing it and the one-ounce weight on
one side of the scale and the seven-ounce weight on the other.

Here’s a function question to ponder: let’s say that you get to choose n weights. Which ones would you
pick to give yourself the best range of weights that you’d be capable of measuring?
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Problem Two: CHeMoWIZrDy

Some words in the English language can be spelled out using just element symbols from the Periodic
Table. For example, “began” can be spelled out as BeGaN (beryllium, gallium, nitrogen), and “feline” can
be spelled out as FeLiNe (iron, lithium, neon). Not all words have this property, though; the word “inter-
esting” cannot be made out of element letters, nor can the word “chemistry” (though, interestingly, the
word “physics” can be made as PHYSICS (phosphorous, hydrogen, yttrium, sulfur, iodine, carbon, sul-
fur).

Write a function
bool isElementSpellable(const string& text, const HashSet<string>& symbols);

that accepts as input a string and a HashSet<string> containing all element symbols (stored with the
proper capitalization), then returns whether that string can be written using only element symbols. Once
you’ve gotten that function working, modify the function so that it has this signature:

bool isElementSpellable(const string& text, const HashSet<string>& symbols,
string& result);

This function should behave as before, except that if it turns out that it is possible to spell the input
string just using element symbols, the variable result is overwritten with one possible way of doing so.

Here’s a final variation to consider, which is much more challenging than the previous one but would be
a great way to practice your recursive problem-solving. (As in, do this problem only if you have a good
amount of time; it’s challening!) As mentioned above, not all strings can be written using element sym-
bols. The title of this problem is supposed to be “Chemowizardry,” but that just isn’t quite spellable us-
ing element symbols, so we compromised on “Chemowizrdy,” cutting out two letters. Write a function

string closestApproximationTo(const string& text, const HashSet<string>& symbols);

that takes as input a string, then returns the longest subsequence of the input string that can be spelled
out using element symbols, capitalized appropriately. For example, given the input “Chemowizardry,”
the function should return “CheMoWIZrDy.”

Problem Three: Barnstorming Brainstorming

You're campaigning for office and it’s down to the very last week before the election. A last-minute tour
of swing states/districts/areas can have a huge impact on your final vote totals, so you decide to see
whether it’s possible to visit all of them in a short amount of time. As as simplifying assumption for this
problem, let’s assume that each of your campaign stops is represented as a GPoint, which represents a
point in space. You can access the x and y coordinates of a GPoint, which are doubles, by using the
syntax pr.getX() and pr.getY(). Further, let’s assume the travel time between two points is equal to
their Euclidean (straight line) distance. Write a function

bool canVisitAllSites(const Vector<GPoint>& sites, double travelTimeAvailable);

that takes as input a list of all the sites you’d like to visit and an amount of free time available to you and
returns whether it’s possible to visit all those sites in the allotted time (assume you’ve already factored in
the cost of speaking at each site and that you're just concerned about the travel time.) You can start
wherever you'd like. Once you’ve gotten that working, update your function so that it has this signature:

bool canVisitAllSites(const Vector<GPoint>& sites,
double travelTimeAvailable,
Vector<GPoint>& result);

This function works as before, except that if it’s possible to visit all the sites, it fills in the parameter re-
sult with the list of the cities in the order you should visit them. Then think about whether memoiza-
tion would be appropriate here and, if so, update your code to use it.
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Problem Four: Pattern Matching

One of the concepts you’ll probably run into if you continue on as a programmer (or take CS103!) is the
regular expression, a way of representing a pattern to match as a string. Regular expressions make it
easy to write code to search for complicated patterns in text and break them apart, and a lot of our
starter files include them to parse test case files. This problem addresses a simplified version of regular
expression matching.

Let’s imagine that you have a pattern string that consists of letters, plus the special characters star (*),
dot (.), and question-mark (?). The star symbol means “any string of zero or more characters,” the dot
means “any individual character,” and the question-mark means “nothing, or any character.” Here are
some examples:

« The pattern a* means “match the letter a, then match any number of characters,” so it essentially
means “match anything beginning with an a.” As a result, a* would match apple, apply, and
apoplexy, but not Amicus (it’s case-sensitive), banana (contains an a, but doesn’t start with
one), or moose (which isn’t even close).

« The pattern *a* means “match any number of characters, then an a, then any number of charac-
ters,” so it essentially means “match any string containing an a.” Therefore, the pattern *a*
would match ramadan, diwali, shavuot, and advent but not the strings eid, sukkot, lent, or
holi.

« The pattern th... means “match th, then math any three characters,” so it matches five-letter
words starting with th. For example, this would match there and third, but not the or other.

« The pattern colo?r means “match colo, then optionally match another character, then match r,”
so it would match color and colour (as well as coloxr), but not colors or colours.

Your task is to write a function
bool matches(const string& text, const string& pattern);
that takes as input a string and a pattern, then returns whether that string matches the pattern.

Once youre done, ask yourself whether memoization would make this function any faster, and, if so,
update this function to use memoization.
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Problem Five: Advocating for Exponents
Below is a simple function that computes the value of m”" when n is a nonnegative integer:

int raiseToPower(int m, int n) {
int result = 1;
for (int 1 = 0; 1 < n; 1++) {
result *= m;

return result;
}

1.  What is the big-O complexity of the above function, written in terms of m and n? You can as-
sume that it takes time O(1) to multiply two numbers.

ii. If it takes 1us to compute raiseToPower (100, 100), approximately how long will it take to
compute raiseToPower (200, 10000)?

Below is a recursive function that computes the value of m" when 7 is a nonnegative integer:

int raiseToPower(int m, int n) {
if (n == 0) return 1;
return m * raiseToPower(m, n - 1);

}

iii. What is the big-O complexity of the above function, written in terms of m and n? You can as-
sume that it takes time O(1) to multiply two numbers.

iv. If it takes lus to compute raiseToPower(100, 100), approximately how long will it take to
compute raiseToPower (200, 10000)?

Here’s an alternative recursive function for computing m” that uses a technique called exponentiation by
squaring. The idea is to modify the recursive step as follows.

« If nis an even number, then we can write as n = 2k. Then m" = m* = (m*)%.
« If nis an odd number, then we can write n = 2k + 1. Then m" = m***' = m - (m*).
Based on this observation, we can write this recursive function:

int raiseToPower(int m, int n) {
if (n ==0) {
return 1;
} else if (n % 2 == 0) {
int halfPower = raiseToPower(m, n / 2);
return halfPower * halfPower;

} else {
int halfPower = raiseToPower(m, n / 2);
return m * halfPower * halfPower;

}

v. What is the big-O complexity of the above function, written in terms of m and n? You can as-
sume that it takes time O(1) to multiply two numbers.

vi. If it takes lus to compute raiseToPower (100, 100), approximately how long will it take to
compute raiseToPower (200, 10000)?
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Problem Six: Revisiting Reversals
In one of our earlier lectures, we wrote this function to reverse a string:

string reverseOf(string str) {

if (str == "") {
return str;
} else {

return reverseOf(str.substr(1)) + str[0];

}
}

Let n be the length of the input string. What is the big-O complexity of the above function? You may
find the following facts useful:

The runtime of the string::substr function is O(k), where k is the length of the string re-
turned.

The runtime of concatenating two strings is O(k), where k is the length of the string returned.

The runtime of comparing two strings is O(k), where k is the length of the shorter of the two
strings being compared.

The runtime of making a copy of a string is O(k), where k is the length of the string.
The runtime of choosing a single character out of a string is O(1).

Now, let’s suppose you change that function so that it takes its argument by const reference, as shown
here:

string reverseOf(const string& str) {

if (str == "") {
return str;
} else {

return reverseOf(str.substr(1)) + str[0];

}
}

Now, what’s the big-O time complexity of this function? Do you think it would be faster than before?
Here’s a completely different way of reversing a string:

string reverseOf(const string& str) {
if (str.length() <= 1) {
return str;
} else {
return reverseOf(str.substr(str.length() / 2)) +
reverseOf(str.substr(0, str.length() / 2));
}
}

Talk with your fellow sectionees about how this function works. What does it do? Why is it correct?
Then, once you’ve got that sorted out, think about how efficient it is. What’s the big-O time complexity
of this function, assuming that string: :length runs in time O(1)?
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