Programming Abstractions

CS106B

Cynthia Lee
Today’s Topics

Recursion Week continues!

- Today, two applications of recursion:
 - Fractals (will help us visualize the order of operations in recursion)
 - Binary Search (one of the fundamental algorithms of CS)

Next time:

- More recursion! It’s Recursion Week!
- Like Shark Week, but more nerdy
Fractals

fractal: A self-similar mathematical set that can often be drawn as a recurring graphical pattern.

- Smaller instances of the same shape or pattern occur within the pattern itself.
- When displayed on a computer screen, it can be possible to infinitely zoom in/out of a fractal.
Example fractals

Sierpinski triangle: equilateral triangle contains smaller triangles inside it

Koch snowflake: a triangle with smaller triangles poking out of its sides

Mandelbrot set: circle with smaller circles on its edge
Coding a fractal

Many fractals are implemented as a function that accepts x/y coordinates, size, and a level parameter.

- The level is the number of recurrences of the pattern to draw.

Example, Koch snowflake:
 - snowflake(window, x, y, size, 1);
 - snowflake(window, x, y, size, 2);
 - snowflake(window, x, y, size, 3);
Stanford graphics lib

#include "gwindow.h"

gw.drawLine(x1, y1, x2, y2); draws a line between the given two points

gw.drawPolarLine(x, y, r, t); draws line from (x,y) at angle t of length r; returns the line's end point as a GPoint

gw.getPixel(x, y) returns an RGB int for a single pixel

gw.setColor(color); sets color with a color name string like "red", or #RRGGBB string like "#ff00cc", or RGB int

gw.setPixel(x, y, rgb); sets a single RGB pixel on the window

gw.drawOval(x, y, w, h); other shape and line drawing functions

gw.fillRect(x, y, w, h); ... (see online docs for complete member list)

GWindow gw(300, 200);
gw.setTitle("CS 106B Fractals");
gw.drawLine(20, 20, 100, 100);
Cantor Set

The Cantor Set is a simple fractal that begins with a line segment.

- At each level, the middle third of the segment is removed.
- In the next level, the middle third of each third is removed.

Write a function `cantorSet` that draws a Cantor Set with a given number of levels (lines) at a given position/size.

- Place 20 px of vertical space between levels.
void cantorSet(GWindow& window, int x, int y, int width, int levels) {
 if (levels > 0) {
 // recursive case: draw line, then repeat by thirds
 window.drawLine(x, y, x + width, y);
 cantorSet(window, x, y + 20, width/3, levels-1);
 cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);
 }
 // else, base case: 0 levels, do nothing
}
void cantorSet(GWindow& window, int x, int y, int width, int levels) {
 if (levels > 0) {
 // recursive case: draw line, then repeat by thirds
 window.drawLine(x, y, x + width, y);
 cantorSet(window, x, y + 20, width/3, levels-1);
 cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);
 }
 // else, base case: 0 levels, do nothing
}
Classic and important CS problem: searching
Current issue in computer science: we have *loads* of data! Once we have all this data, how do we find anything?
Imagine storing **sorted** data in an array

How long does it take us to find a number we are looking for?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>25</td>
<td>29</td>
<td>33</td>
<td>51</td>
<td>89</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>
Imagine storing **sorted** data in an array

How long does it take us to find a number we are looking for?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>25</td>
<td>29</td>
<td>33</td>
<td>51</td>
<td>89</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>

If you start at the front and proceed forward, each item you examine rules out 1 item.
Imagine storing sorted data in an array

If instead we jump right to the middle, one of three things can happen:

1. The middle one happens to be the number we were looking for, yay!
2. We realize we went too far
3. We realize we didn’t go far enough
Imagine storing **sorted** data in an array

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>25</td>
<td>29</td>
<td>33</td>
<td>51</td>
<td>89</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>

If instead we **jump right to the middle**, one of three things can happen:

1. The middle one happens to be the number we were looking for, yay!
2. We realize we went too far
3. We realize we didn’t go far enough

Ruling out HALF the options in one step is so much faster than only ruling out one!
Binary search

Let’s say the answer was case 3, “we didn’t go far enough”
• We ruled out the entire first half, and now only have the second half to search
• We could start at the front of the second half and proceed forward checking each item one at a time…
Binary search

Let’s say the answer was case 3, “we didn’t go far enough”
• We ruled out the entire first half, and now only have the second half to search
• We could start at the front of the second half and proceed forward checking each item one at a time… but why do that when we know we have a better way?

Jump right to the middle of the region to search
Binary search

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>25</td>
<td>29</td>
<td>33</td>
<td>51</td>
<td>89</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>

Let’s say the answer was case 3, “we didn’t go far enough”

- We ruled out the entire first half, and now only have the second half to search.
- We could go to the front of the second half and proceed forward checking one item at a time… but why do that when we have a better way?

Jump right to the middle of the region to search.
Binary Search Implementation

Now we understand the approach. What does the code look like?
bool binarySearch(const Vector<int>& data, int key){
 // want to keep passing same data by reference for efficiency,
 // but then how do we cut in half?
 return binarySearch(data, key, 0, data.size() - 1); // new params
}

bool binarySearch(const Vector<int>& data, int key, int start, int end){
 if (start > end) return false;
 int mid = (start + end) / 2;
 if (key == data[mid]) {
 return true;
 } else if (key < data[mid]) {
 return binarySearch(data, key, ______, ______);
 } else {
 return binarySearch(data, key, ______, ______);
 }
}
Recursive Function Design Tip: Wrapper function

- When we want to write a recursive function that needs more book-keeping data passed around than an outsider user would want to worry about, do this:
 1. Write the function as you need to for correctness, using any extra book-keeping parameters you like in whatever way you like.
 2. Make a second function that the outside world sees, using only the minimum number of parameters, and have it do nothing but call the recursive one.
 - Called a “wrapper” function because it’s like pretty outer packaging.