Programming Abstractions

CS106B

Cynthia Lee
Graphs Topics

Graphs!

1. Basics
 - What are they? How do we represent them?

2. Theorems
 - What are some things we can prove about graphs?

3. Breadth-first search on a graph
 - Spoiler: just a very, very small change to tree version

4. Dijkstra’s shortest paths algorithm
 - Spoiler: just a very, very small change to BFS

5. A* shortest paths algorithm
 - Spoiler: just a very, very small change to Dijkstra’s

6. Minimum Spanning Tree
 - Kruskal’s algorithm
Diagram of a network with nodes labeled A, B, C, D, E, F, G, H, I. Edges are labeled with distances: A to B (6), B to C (3), D to A (3), E to D (1), E to F (7), F to I (7), G to H (2), H to I (5).
A
0

B
6?

C

D
3

E
4?

F

G
12?

H

I

E
4?

B
6?

G
12?
Stanford University
You predict the next queue state:
A. H,C,F,G,I
B. C,F,G,I
C. C,G,F,I
D. Other/none/more
Dijkstra's Algorithm

- Split nodes apart into three groups:
 - Green nodes, where we already have the shortest path;
 - Gray nodes, which we have never seen; and
 - Yellow nodes that we still need to process.

- Dijkstra's algorithm works as follows:
 - Mark all nodes gray except the start node, which is yellow and has cost 0.
 - Until no yellow nodes remain:
 - Choose the yellow node with the lowest total cost.
 - Mark that node green.
 - Mark all its gray neighbors yellow and with the appropriate cost.
 - Update the costs of all adjacent yellow nodes by considering the path through the current node.
An Important Note

- The version of Dijkstra's algorithm I have just described is *not* the same as the version described in the course reader.
- This version is more complex than the book's version, but is much faster.
- THIS IS THE VERSION YOU MUST USE ON YOUR TRAILBLAZER ASSIGNMENT!
Dijkstra’s: SPIN analysis (shoutout to GSB students)

- **Situation:**
 - Dijkstra's algorithm works by incrementally computing the shortest path to intermediary nodes in the graph *in case* they prove to be useful.

- **Problem:**
 - No big-picture conception of how to get to the destination – the algorithm explores outward in all directions, “in case.”

- **Implication:**
 - Most of these explored nodes will end up being in completely the wrong direction.

- **Need:**
 - Could we give the algorithm a “hint” of which direction to go?
A* and Dijkstra’s

Close cousins
Heuristics

- In the context of graph searches, a **heuristic function** is a function that guesses the distance from some known node to the destination node.
- The guess doesn't have to be correct, but it should try to be as accurate as possible.
- Examples: For Google Maps, a heuristic for estimating distance might be the straight-line “as the crow flies” distance.

Admissible Heuristics

- A heuristic function is called an **admissible heuristic** if it never overestimates the distance from any node to the destination.
- In other words:
 - $\text{predicted-distance} \leq \text{actual-distance}$
Why Heuristics Matter

- We can modify Dijkstra's algorithm by introducing heuristic functions.
- Given any node u, there are two associated costs:
 - The actual distance from the start node s.
 - The heuristic distance from u to the end node t.
- Key idea: Run Dijkstra's algorithm, but use the following priority in the priority queue:
 \[
 \text{priority}(u) = \text{distance}(s, u) + \text{heuristic}(u, t)
 \]
- This modification of Dijkstra's algorithm is called the **A* search algorithm**.
A* Search

- As long as the heuristic is admissible (and satisfies one other technical condition), A* will always find the shortest path from the source to the destination node.
- Can be *dramatically* faster than Dijkstra's algorithm.

- Focuses work in areas likely to be productive.
- Avoids solutions that appear worse *until* there is evidence they may be appropriate.
- Mark all nodes as gray.
- Mark the initial node \(s \) as yellow and at candidate distance 0.
- Enqueue \(s \) into the priority queue with priority 0.
- While not all nodes have been visited:
 - Dequeue the lowest-cost node \(u \) from the priority queue.
 - Color \(u \) green. The candidate distance \(d \) that is currently stored for node \(u \) is the length of the shortest path from \(s \) to \(u \).
 - If \(u \) is the destination node \(t \), you have found the shortest path from \(s \) to \(t \) and are done.
 - For each node \(v \) connected to \(u \) by an edge of length \(L \):
 - If \(v \) is gray:
 - Color \(v \) yellow.
 - Mark \(v \)'s distance as \(d + L \).
 - Set \(v \)'s parent to be \(u \).
 - Enqueue \(v \) into the priority queue with priority \(d + L \).
 - If \(v \) is yellow and the candidate distance to \(v \) is greater than \(d + L \):
 - Update \(v \)'s candidate distance to be \(d + L \).
 - Update \(v \)'s parent to be \(u \).
 - Update \(v \)'s priority in the priority queue to \(d + L \).
Mark all nodes as gray.
Mark the initial node \(s \) as yellow and at candidate distance 0.
Enqueue \(s \) into the priority queue with priority \(h(s,t) \).
While not all nodes have been visited:
Dequeue the lowest-cost node \(u \) from the priority queue.
Color \(u \) green. The candidate distance \(d \) that is currently stored for node \(u \) is the length of the shortest path from \(s \) to \(u \).
If \(u \) is the destination node \(t \), you have found the shortest path from \(s \) to \(t \) and are done.
For each node \(v \) connected to \(u \) by an edge of length \(L \):
 – If \(v \) is gray:
 • Color \(v \) yellow.
 • Mark \(v \)'s distance as \(d + L \).
 • Set \(v \)'s parent to be \(u \).
 • Enqueue \(v \) into the priority queue with priority \(d + L + h(v,t) \).
 – If \(v \) is yellow and the candidate distance to \(v \) is greater than \(d + L \):
 • Update \(v \)'s candidate distance to be \(d + L \).
 • Update \(v \)'s parent to be \(u \).
 • Update \(v \)'s priority in the priority queue to \(d + L + h(v,t) \).
A* on two points where the heuristic is slightly misleading due to a wall blocking the way.
A* starts with start node yellow, other nodes grey.
A*: dequeue start node, turns green.
A*: enqueue neighbors with candidate distance + heuristic distance as the priority value.
A*: dequeue min-priority-value node.
What goes in the $???$ square?

A. $2 + 5$?
B. $1 + 6$?
C. $2 + 4$?
D. Other/none/more
A*: enqueue neighbors.
Now we’re done with the green “1” node’s turn.

What is the next node to turn green? (and what would it be if this were Dijkstra’s?)
A*: dequeue next lowest priority value node. Notice we are making a straight line right for the end point, not wasting time with other directions.
A*: enqueue neighbors—uh-oh, wall blocks us from continuing forward.
A*: eventually figures out how to go around the wall, with some waste in each direction.
For Comparison: What Dijkstra’s Algorithm Would Have Searched

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9?</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9?</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>⭐️</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>⭐️</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9?</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9?</td>
</tr>
</tbody>
</table>
- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0.
- Enqueue s into the priority queue with priority 0.
- While not all nodes have been visited:
 - Dequeue the lowest-cost node u from the priority queue.
 - Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u.
 - If u is the destination node t, you have found the shortest path from s to t and are done.
 - For each node v connected to u by an edge of length L:
 - If v is gray:
 - Color v yellow.
 - Mark v's distance as $d + L$.
 - Set v's parent to be u.
 - Enqueue v into the priority queue with priority $d + L$.
 - If v is yellow and the candidate distance to v is greater than $d + L$:
 - Update v's candidate distance to be $d + L$.
 - Update v's parent to be u.
 - Update v's priority in the priority queue to $d + L$.
Mark all nodes as gray.
Mark the initial node s as yellow and at candidate distance 0.
Enqueue s into the priority queue with priority $h(s,t)$.

While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u.

If u is the destination node t, you have found the shortest path from s to t and are done.

For each node v connected to u by an edge of length L:
 - If v is gray:
 - Color v yellow.
 - Mark v's distance as $d + L$.
 - Set v's parent to be u.
 - Enqueue v into the priority queue with priority $d + L + h(v,t)$.
 - If v is yellow and the candidate distance to v is greater than $d + L$:
 - Update v's candidate distance to be $d + L$.
 - Update v's parent to be u.
 - Update v's priority in the priority queue to $d + L + h(v,t)$.
Minimum Spanning Tree
A **spanning tree** in an undirected graph is a set of edges with no cycles that connects all nodes.

A **minimum spanning tree** (or **MST**) is a spanning tree with the least total cost.
How many distinct minimum spanning trees are in this graph?

A. 0-1
B. 2-3
C. 4-5
D. 6-7
E. >7
Kruskal’s algorithm

Remove all edges from graph
Place all edges in a PQ based on length/weight
While !PQ.isEmpty():
 ▪ Dequeue edge
 ▪ If the edge connects previous disconnected nodes or groups of nodes, keep the edge
 ▪ Otherwise discard the edge
Kruskal’s algorithm
The Good Will Hunting Problem
Video Clip

https://www.youtube.com/watch?v=N7b0cLn-wHU
“Draw all the homeomorphically irreducible trees with n=10.”
“Draw all the homeomorphically irreducible trees with n=10.”

In this case “trees” simply means graphs with no cycles “with n = 10” (i.e., has 10 nodes) “homeomorphically irreducible”

- No nodes of degree 2 allowed in your solutions
 - For this problem, nodes of degree 2 are useless in terms of tree structure—they just act as a blip on an edge—and are therefore banned

- Have to be actually different
 - Ignore superficial changes in rotation or angles of drawing