Programming Abstractions

CS106B

Cynthia Bailey Lee
Julie Zelenski
Topics:

- **Map** implemented as a Binary Search Tree (BST)
 - Starting with a dream: binary search in a linked list?
 - How our dream provided the inspiration for the BST
 - BST insert
 - Big-O analysis of BST
 - BST balance issues
- Traversals
 - Pre-order, In-order, Post-order, Breadth-first
- Applications of Traversals
BST and Heap Facts (cheat sheet)

Heap (Priority Queue)
- Structure: must be “complete”
- Order: parent priority must be <= both children
 › This is for min-heap, opposite is true for max-heap
 › No rule about whether left child is > or < the right child
- Big-O: guaranteed log(n) enqueue and dequeue
- Operations: always add to end of array and then “bubble up”; for dequeue do “trickle down”

BST (Map)
- Structure: any valid binary tree
- Order: leftchild.key < self.key < rightchild.key
 › No duplicate keys
 › Because it’s a Map, values go along for the ride w/keys
- Big-O: log(n) if balanced, but might not be balanced, then O(n)
- Operations: recursively repeat: start at root and go left if key < root, and go right if key > root
BST Balance Strategies

We need to balance the tree to keep performance $O(\log n)$ instead of $O(n)$.
Step 1: understanding validity and equivalence in BSTs

AVL ROTATIONS: A KEY TO OUR REBALANCING ALGORITHMS
AVL rotations: BST-order-preserving movement of nodes

- Here is a Binary Search Tree whose keys I’m not going to show you
 - (but the nodes have colors/textures so you can tell them apart)
- Let’s pause and think about what we know must be true
AVL rotations

- Here is a Binary Search Tree whose keys I’m not going to show you
 - (but the nodes have colors/textures so you can tell them apart)
- Let’s pause and think about what we know must be true
 1. Cardinal’s key > green’s key

put() algorithm

If key > node’s key
 Go right! (if doesn’t exist—place here)
If key < node’s key
 Go left! (if doesn’t exist—place here)
If key is equal, update value here.
AVL rotations

- Here is a Binary Search Tree whose keys I’m not going to show you
 › (but the nodes have colors/textures so you can tell them apart)
- Let’s pause and think about what we know must be true
 1. Cardinal’s key > green’s key
 2. Cardinal’s key > all 7 keys to its left!

```java
put(node, key, value)
  If key > node’s key
    Go right! (if doesn’t exist—place here)
  If key < node’s key
    Go left! (if doesn’t exist—place here)
  If key is equal, update value here.
```
AVL rotations

- Here is a Binary Search Tree whose keys I’m not going to show you
 - (but the nodes have colors/textures so you can tell them apart)
- Let’s pause and think about what we know must be true
 1. Cardinal’s key > green’s key
 2. Cardinal’s key > all 7 keys to its left!
 3. Green’s key < blue’s key < cardinal’s key

put() algorithm

- If key > node’s key
 - Go right! (if doesn’t exist—place here)
- If key < node’s key
 - Go left! (if doesn’t exist—place here)
- If key is equal, update value here.
AVL rotations

- Here is a Binary Search Tree whose keys I’m not going to show you
 (but the nodes have colors/textures so you can tell them apart)
- Let’s pause and think about what we know must be true
 1. Cardinal’s key > green’s key
 2. Cardinal’s key > all 7 keys to its left!
 3. Green’s key < blue’s key < cardinal’s key
- Those are just a few examples of the kind of reasoning you’ll want to use for this exercise…

put() algorithm

If key > node’s key
 Go right! (if doesn’t exist—place here)
If key < node’s key
 Go left! (if doesn’t exist—place here)
If key is equal, update value here.
AVL rotations

Your turn: Which of the trees below are still in BST order? (list all that apply)
AVL rotations

- 2/3 are actual AVL rotations!
- In this case, our BST started balanced, so the rotations made the less balanced. But also useful for balancing.
Left-Left AVL Rotation

Original (valid but unbalanced BST):

Left - Left rotation (restores balance):

- Right-Right is just the mirror image
Right-Left AVL Rotation

Original (valid but unbalanced BST):

Right-Left rotation (restores balance):

- Left-Right is just the mirror image
A few BST balance strategies

- AVL tree
 - Uses AVL rotations to guarantee balance

- Red-Black tree
 - Uses AVL rotations to guarantee balance is off by no more than a constant factor (longest path from root to leaf can be at most 2x the shortest path)

- Treap
 - Each node has *two* keys and a value, one is BST key, one is a min-heap key, *both kinds of trees’ order properties are maintained* (!!!)
 - Insert nodes according to BST keys and BST order
 - Then use AVL rotations to “bubble up” the newly inserted node as needed to restore the min-heap order property on the min-heap keys
 - What could be cooler than that, amirite? 😄😍❤️😊
Red-Black trees

Every simple path from a given node to any of its descendant leaves contains the same number of black nodes.

- (This is what guarantees “close” to balance)

Video: http://www.youtube.com/watch?v=vDHFF4wjWYU
Other fun types of BST

Splay tree
- Rather than only worrying about balance, Splay Tree dynamically readjusts node placement based on **how often users search for an item**. Most commonly-searched items rotate towards the root, saving time.
 - Example: if Google did this, “Bieber” would be near the root, and “splay tree” would be further down by the leaves

B-Tree
- Like BST, but a node can have many children, not just two
- More branching means an even “flatter” (shorter height) tree
- Used for huge databases
Tree Traversals!

These are for any binary trees, but we often do them on BSTs
Your Turn: What does this print? (assume we call traverse on the root node to start)

```cpp
void traverse(Node* node) {
    if (node != nullptr) {
        cout << node->key << " ";
        traverse(node->left);
        traverse(node->right);
    }
}
```

A. A B C D E F
B. A B D E C F
C. D B E F C A
D. D E B F C A
E. Other/none/more
Your Turn: What does this print? (assume we call traverse on the root node to start)

```cpp
void traverse(Node* node) {
    if (node != nullptr) {
        traverse(node->left);
        traverse(node->right);
        cout << node->key << " ";
    }
}
```

A. A B C D E F
B. A B D E C F
C. D B E F C A
D. D E B F C A
E. Other/none/more
Your Turn: What does this print?
(assume we call traverse on the root node to start)

```cpp
void traverse(Node* node) {
    if (node != nullptr) {
        traverse(node->left);
        cout << node->key << " ";
        traverse(node->right);
    }
}
```

A. 1 2 4 5 8 9
B. 1 4 2 9 8 5
C. 5 2 1 4 8 9
D. 5 2 8 1 4 9
E. Other/none/more
Applications of Tree Traversals

BEAUTIFUL LITTLE THINGS FROM AN ALGORITHMS/THEORY STANDPOINT, BUT THEY HAVE A PRACTICAL SIDE TOO!
Traversals a very commonly-used tool in your CS toolkit

```c
void traverse(Node* node) {
    if (node != NULL) {
        traverse(node->left);
        // "do something"
        traverse(node->right);
    }
}
```

- Customize and move around the “do something,” and that’s the basis for dozens of algorithms and applications
Stanford Library Map

- Remember how when you iterate over the Stanford library Map you get the keys in sorted order?
 - (we used this for the word occurrence counting code example in class)
- Now you know why it can do that in O(N) time!
 - **Stanford library Map is a BST**
 - **In-order traversal on BST!**
Your Turn: Applications of the traversals

You are writing the destructor for a BST class. Given a pointer to the root, it needs to free each node. Which traversal would form the foundation of your destructor algorithm?

A. Pre-order
B. In-order
C. Post-order
D. Something else

```cpp
void bstDestructorRecursiveHelper(Node *node) {
    if (node != nullptr) {
        delete node; // pre-order
        bstDestructorRecursiveHelper(node->left);
        delete node; // in-order
        bstDestructorRecursiveHelper(node->right);
        delete node; // post-order
    }
}
```
You are writing the destructor for a BST class. Given a pointer to the root, it needs to free each node. Which traversal would form the foundation of your destructor algorithm?

- If we do pre-order, we dereference the node pointer after delete—bad!!
- Same problem if we do in-order
- Post-order avoids this problem

```cpp
void bstDestructorRecursiveHelper(Node *node) {
    if (node != nullptr) {
        delete node; // pre-order
        bstDestructorRecursiveHelper(node->left);
        bstDestructorRecursiveHelper(node->right);
    }
}
```
Applications of the traversals

- You are writing the **destructor** for a BST class. Given a pointer to the root, it needs to free each node. Which traversal would form the foundation of your destructor algorithm?
 - **Post-order is a good choice**, because we need to use the node’s fields to recurse
 - Don’t want to delete fields before we use them!

```cpp
void bstDestructorRecursiveHelper(Node *node) {
    if (node != nullptr) {
        bstDestructorRecursiveHelper(node->left);
        bstDestructorRecursiveHelper(node->right);
        delete node; // post-order
    }
}
```
Breadth-First Tree Traversal

A somewhat different kind of traversal
How can we get code to print top-to-bottom, left-to-right order?

```cpp
void traverse(Node* node) {
    if (node != nullptr) {
        cout << node->key << " ";
        traverse(node->left);
        traverse(node->right);
    }
}
```

You can’t do it by using this code and moving around the cout—we already tried moving the cout to all 3 possible places and it didn’t print breadth-first order

- You can but you use a **queue** instead of recursion
- “**Breadth-first**” search you’ve seen on previous assignments
- *Again we see this key theme of BFS (queue) vs DFS (stack/recursion)!*