CS 106B, Lecture 10
Recursion and Fractals
Plan for Today

• One more recursive data example
• Introduction to **fractals**, a powerful tool used in graphics
• **fractal**: A self-similar mathematical set that can often be drawn as a recurring graphical pattern.
 – Smaller instances of the same shape or pattern occur within the pattern itself.
 – When displayed on a computer screen, it can be possible to infinitely zoom in/out of a fractal.
Fractals in nature

- Many natural phenomena generate fractal patterns:
 - earthquake fault lines
 - animal color patterns
 - clouds
 - mountain ranges
 - snowflakes
 - crystals
 - DNA
 - shells
 - ...

![Fractal patterns in nature](image)
Example fractals

- **Sierpinski triangle**: equilateral triangle contains smaller triangles inside it (your next homework)

- **Koch snowflake**: a triangle with smaller triangles poking out of its sides

- **Mandelbrot set**: circle with smaller circles on its edge
Coding a fractal

• Many fractals are implemented as a function that accepts x/y coordinates, size, and a level parameter.
 – The level is the number of recurrences of the pattern to draw.
 – The position and size change in the recursive call; level decreases by 1

• Example, Koch snowflake:
 \[\text{snowflake}(\text{window, x, y, size, 1}); \]
 \[\text{snowflake}(\text{window, x, y, size, 2}); \]
 \[\text{snowflake}(\text{window, x, y, size, 3}); \]
• Where should the following line be inserted in order to get the figure at right?

```java
gw.fillRect(x - size / 2, y - size / 2, size, size);
```

```java
void boxyFractal(GWindow& gw, int x, int y, int size, int order) {
    if (order >= 1) {
        // A) here
        boxyFractal(gw, x - size / 2, y - size / 2, size / 2, order - 1);
        // B) here
        boxyFractal(gw, x + size / 2, y + size / 2, size / 2, order - 1);
        // C) here
        boxyFractal(gw, x + size / 2, y - size / 2, size / 2, order - 1);
        // D) here
        boxyFractal(gw, x - size / 2, y + size / 2, size / 2, order - 1);
        // E) here
    }
}
```
#include "gwindow.h"

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gw.drawLine(x1, y1, x2, y2);</td>
<td>draws a line between the given two points</td>
</tr>
<tr>
<td>gw.drawPolarLine(x, y, r, t);</td>
<td>draws line from (x,y) at angle t of length r;</td>
</tr>
<tr>
<td></td>
<td>returns the line's end point as a GPoint</td>
</tr>
<tr>
<td>gw.getPixel(x, y)</td>
<td>returns an RGB int for a single pixel</td>
</tr>
<tr>
<td>gw.setColor("color");</td>
<td>sets color with a color name string like "red", or #RRGGBB string like "#ff00cc", or RGB int</td>
</tr>
<tr>
<td>gw.setPixel(x, y, rgb);</td>
<td>sets a single RGB pixel on the window</td>
</tr>
<tr>
<td>gw.drawOval(x, y, w, h);</td>
<td>other shape and line drawing functions</td>
</tr>
<tr>
<td>gw.fillRect(x, y, w, h);</td>
<td>(see online docs for complete member list)</td>
</tr>
</tbody>
</table>

GWindow gw(300, 200);
gw.setTitle("CS 106B Fractals");
gw.drawLine(20, 20, 100, 100);
Cantor Set

- The **Cantor Set** is a simple fractal that begins with a line segment.
 - At each *level*, the middle third of the segment is removed.
 - In the next *level*, the middle third of each third is removed.

- Write a function **cantorSet** that draws a Cantor Set with a given number of levels (lines) at a given position/size.
 - Place CANTOR_SPACING of vertical space between levels.

- How is this fractal *self-similar*?
- What is the *minimum amount of work* to do at each level?
- What's a good stopping point (base case)?
void cantorSet(GWindow& window, int x, int y,
 int width, int levels) {
 if (levels > 0) {
 // recursive case: draw line, then repeat by thirds
 window.drawLine(x, y, x + width, y);
 cantorSet(window, x, y + 20, width/3, levels-1);
 cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);
 } // else, base case: 0 levels, do nothing
}
Q: Which way does the drawing animate? (How could we change it?)

```cpp
void cantorSet(GWindow& window, int x, int y,
               int width, int levels) {
    if (levels > 0) {
        // recursive case: draw line, then repeat by thirds
        pause(250);
        window.drawLine(x, y, x + width, y);
        cantorSet(window, x, y + 20, width/3, levels-1);
        cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);
    }
}
```

A.
B.
C.
D.

![Diagram A](image1.png)
![Diagram B](image2.png)
![Diagram C](image3.png)
![Diagram D](image4.png)
Announcements

• Homework 2 due on today at **5PM**
• Homework 1 grades will be released by your section leader soon!
• Shreya will be guest-lecturing on Monday
 – My office hours will be cancelled that day (still available via email)
• **Midterm Review Session** on Tuesday, July 24, from 7-9PM in Gates B01
Koch snowflake

- **Koch snowflake**: A fractal formed by pulling a triangular "bend" out of each side of an existing triangle at each level.

- Start with an equilateral triangle, then:
 - Divide each of its 3 line segments into 3 parts of equal length.
 - Draw an eq.triangle with middle segment as base, pointing outward.
 - Remove the middle line segment.
• Replace each line segment as follows:
Multiple levels

• How is this fractal self-similar?
Polar lines

```javascript
// x y r theta
window.drawPolarLine(20, 20, 113, -45);
```

- 113 pixels
- -45 degrees
Triangle in polar

• Segment 1:

Segment 2:

Segment 3:
Segment in polar

• Think of a triangle side as 4 polar line segments, as below.
 – What are their angles, relative to the angle of this triangle side?
Snowflake solution

GPoint ksLine(GWindow& gw, GPoint pt, int size, int t, int levels) {
 if (levels == 1) {
 return gw.drawPolarLine(pt, size, t);
 } else {
 pt = ksLine(gw, pt, size/3, t, levels - 1);
 pt = ksLine(gw, pt, size/3, t + 60, levels - 1);
 pt = ksLine(gw, pt, size/3, t - 60, levels - 1);
 return ksLine(gw, pt, size/3, t, levels - 1);
 }
}

void kochSnowflake(GWindow& gw, int x, int y, int size, int levels) {
 GPoint pt(x, y);
 pt = ksLine(gw, pt, size, 0, levels);
 pt = ksLine(gw, pt, size, -120, levels);
 pt = ksLine(gw, pt, size, 120, levels);
}
Fibonacci exercise

• Write a recursive function `fib` that accepts an integer `N` and returns the `N`th Fibonacci number.
 – The first two Fibonacci numbers are defined to be 1.
 – Every other Fibonacci number is the sum of the two before it.

 (Don't worry about integer overflow.)

 fib(1) => 1
 fib(2) => 1
 fib(3) => 2
 fib(4) => 3
 fib(5) => 5
 fib(6) => 8
 fib(7) => 13
 fib(8) => 21
 fib(9) => 34

 ...
Bad fib solution

// Returns the nth Fibonacci number.
int fib(int n) {
 if (n <= 2) {
 return 1;
 } else {
 return fib(n - 1) + fib(n - 2);
 }
}

// what does the call stack look like?
• **memoization**: Caching results of previous expensive function calls for speed so that they do not need to be re-computed.
 – Often implemented by storing call results in a collection.

• Pseudocode template:

```python
cache = {}. // empty

function f(args):
    if I have computed f(args) before:
        Look up f(args) result in cache.
    else:
        Actually compute f(args) result.
        Store result in cache.
    Return result.
```
• We don't want the user to have to worry about the cache!
 – Alternative to the default parameters we saw yesterday
• Some recursive functions need extra arguments to implement the recursion
• A wrapper function is a function that does some initial prep work, then fires off a recursive call with the right arguments.
 – Might be good to know
• The recursion is done in the helper function
// Returns the nth Fibonacci number.
// This version uses memoization.
int fib(int n) { // wrapper function
 Map<int, int> cache;
 return fibHelper(n, cache);
}

int fibHelper(int n, Map<int, int> &cache) {
 if (n <= 2) {
 return 1;
 } else if (cache.containsKey(n)) {
 return cache[n];
 } else {
 int result = fib(n - 1) + fib(n - 2);
 cache[n] = result;
 return result;
 }
}
Overflow (extra) slides
• **tail recursion**: When a recursive call is made as the **final** action of a recursive function.
 – Tail recursion can often be **optimized** by the compiler.
 • Qt Creator: "Release" mode, not "Debug" mode

 – Are these tail recursive?

```c
int mystery(int n) {
    if (n < 10) {
        return n;
    } else {
        int a = n / 10;
        int b = n % 10;
        return mystery(a + b);
    }
}
```

```c
int fact(int n) {
    if (n <= 1) {
        return 1;
    } else {
        return n * fact(n - 1);
    }
}
```
// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
int factorial(int n, int accum = 1) {
 if (n <= 1) {
 return accum;
 } else {
 return factorial(n - 1, accum * n);
 }
}

– Tail recursive solutions often end up passing partial computations as parameters that would otherwise be computed after the recursive call.
// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
int factorial(int n) {
 int accum = 1;
 for (int i = 1; i <= n; i++) {
 accum *= i;
 }
 return accum;
}

– Sometimes looking at the non-recursive version of a function can help you find the tail recursive solution.
 • Often looks more like the non-recursive version, with a variable or parameter keeping track of partial computations.
 • Loop is replaced by recursive call.