Plan for Today

• Learn a powerful algorithmic technique called *recursion*
 – Exploit self-similarity in problems
 – Learn recursive problem-solving

• We will spend several days on recursion – don't worry if it doesn't make sense today
 – Goal: do as many examples as we can
 – You should **practice**: [CodeStepByStep](#), section problems, or examples from the textbook
Recursion

• **recursion**: The function definition involving a call to the same function
 – Solving a problem using recursion depends on solving smaller (simpler) occurrences of the same problem until the problem is simple enough that you can solve it directly
 – Key question: "*How is this problem self-similar?*" – what are the smaller subproblems that make up the bigger problem?

• Occurs in many places in code and in real world:
 – Looking up a word in dictionary may involve looking up other words
 – Nested structures (trees, file folders, collections) can be self-similar.
 – Patterns can contain smaller versions of the same pattern (fractals)
Recursive Programming

- **recursive programming**: Writing functions that call themselves to solve problems that are recursive in nature.
 - An equally powerful substitute for *iteration* (loops)
 - Particularly well-suited to solving certain types of problems
 - Leads to *elegant*, simplistic, short code (when used well)
 - Many programming languages (*functional* languages such as Scheme, ML, and Haskell) use recursion exclusively (no loops)
 - A key component of the rest of our assignments in this course
Recursive Stanford Gear

• We want to count the number of people in the room who are wearing Stanford clothing
• We can't directly count (there are a lot of people in the room)
• BUT you all can help
• You can ask questions of the person behind you and respond to questions from the person in front of you

How can we solve this recursively?
Recursive Stanford Gear

• The first person looks behind them:
 – If there is no one there, the person responds with 1 if they are wearing Stanford gear or 0 if they are not
 – If there is someone behind the person, ask them how many people behind them (including the answerer) are wearing Stanford gear
 – Once the person receives a response, they add 1 if they are wearing Stanford gear, or 0 if they are not, and respond to the person in front of them

• I just need to ask everyone in the front row – much simpler!
Recursive Stanford Gear

• The first person looks behind them:
 – If there is no one there, the person responds with 1 if they are wearing Stanford gear or 0 if they are not
 – If there is someone behind the person, *ask them how many people behind them (including the answerer) are wearing Stanford gear*
 – Once the person receives a response, they add 1 if they are wearing Stanford gear, or 0 if they are not, and respond to the person in front of them

• I just need to ask everyone in the front row – much simpler!

Recursive Call
Recursion and cases

• Every recursive algorithm involves at least 2 cases:
 – **base case**: A simple occurrence that can be answered directly (a single statement of code in the Big O example)
 – **recursive case**: A more complex occurrence of the problem that cannot be directly answered, but can instead be described in terms of smaller occurrences of the same problem (inner loops or code blocks)

 – **Key idea**: In a recursive piece of code, you handle a small part of the overall task yourself (usually the work involves modifying the results of the smaller problems), then make a recursive call to handle the rest.

 – Ask yourself, "How is this task **self-similar**?"
 • "How can I describe this algorithm in terms of a smaller or simpler version of itself?"
Recursion Tips

- Look for *self-similarity*
- Find the minimum *amount of work*
- Make the problem *simpler* by doing the least amount of work possible
- *Trust* the recursion
- Find a stopping point (*base case*)
Three Rules of Recursion

• Every (valid) input must have a case (either recursive or base)

• There **must** be a base case that makes no recursive calls (i.e. on some input(s), the code should not make any recursive calls)

• The recursive case must make the problem simpler and make forward progress to the base case
recursiveFunc() {
 if (test for simple case) { // base case
 Compute the solution without recursion
 } else { // recursive case
 Break the problem into subproblems of the same form
 Call recursiveFunc() on each self-similar subproblem
 Reassemble the results of the subproblems
 }
}
Non-recursive factorial

// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 1.
int factorial(int n) {
 int total = 1;
 for (int i = 1; i <= n; i++) {
 total *= i;
 }
 return total;
}

• Important observations:

 0! = 1! = 1
 4! = 4 * 3 * 2 * 1
 5! = 5 * 4 * 3 * 2 * 1
 = 5 * 4!
Recursive factorial

// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 0.
int factorial(int n) {
 if (n <= 1) {
 // base case
 return 1;
 } else {
 return n * factorial(n - 1); // recursive case
 }
}

• The recursive code handles a small part of the overall task (multiplying by n), then makes a recursive call to handle the rest.
 – The recursive version is written without using any loops.
 • Recursion replaces the while loop
 – We separate the code into a base case (a simple case that does not make any recursive calls), and a recursive case.
int factorial(int n) { // 1
 if (n <= 1) {
 return 1; // base case
 } else {
 return n * factorial(n - 1); // recursive case
 }
}

int factorial(int n) { // 2
 if (n <= 1) {
 return 1; // base case
 } else {
 return n * factorial(n - 1); // recursive case
 }
}

int factorial(int n) { // 3
 if (n <= 1) {
 return 1; // base case
 } else {
 return n * factorial(n - 1); // recursive case
 }
}

int factorial(int n) { // 4
 if (n <= 1) {
 return 1; // base case
 } else {
 return n * factorial(n - 1); // recursive case
 }
}
• Consider the following recursive function:

```c
int mystery(int n) {
    if (n < 10) {
        return n;
    } else {
        int a = n / 10;
        int b = n % 10;
        return mystery(a + b);
    }
}
```

Q: What is the result of: \text{mystery}(648) ?

A. 8 B. 9 C. 54 D. 72 E. 648
Recursive stack trace

```c
int mystery(int n) {
    // n = 648
    if (n < 10) {
        return n;
    } else {
        int a = n / 10;
        int b = n % 10;
        return mystery(a + b);
    }
}
```

```c
int mystery(int n) {
    // n = 72
    if (n < 10) {
        return n;
    } else {
        int a = n / 10;
        int b = n % 10;
        return mystery(a + b);
    }
}
```

```c
int mystery(int n) {
    // n = 9
    if (n < 10) {
        return n;
    } else {
        int a = n / 10;
        int b = n % 10;
        return mystery(a + b);
    }
}
```
• Write a recursive function isPalindrome accepts a string and returns true if it reads the same forwards as backwards.

```python
isPalindrome("madam") ➞ true
isPalindrome("racecar") ➞ true
isPalindrome("step on no pets") ➞ true
isPalindrome("able was I ere I saw elba") ➞ true
isPalindrome("Q") ➞ true
isPalindrome("Java") ➞ false
isPalindrome("rotater") ➞ false
isPalindrome("byebye") ➞ false
isPalindrome("notion") ➞ false
```

– What is a good base case?
isPalindrome

- How is this problem *self-similar*?
- What is the minimum *amount of work*?
- How can we make the problem *simpler* by doing the least amount of work?
- What is our stopping point (*base case*)?
• How is this problem *self-similar*?
 – Palindromes can be written as: x[SMALLER_PALINDROME]x, where x stands for some letter

• What is the minimum *amount of work*?
 – Testing the equality of outside characters

• How can we make the problem *simpler* by doing the least amount of work?
 – Peel off the outside characters and test if the middle is a palindrome

• What is our stopping point (*base case*)?
 – Empty string or string of length 1
// Returns true if the given string reads the same forwards as backwards.
// Trivially true for empty or 1-letter strings.
bool isPalindromes(string s) {
 if (s.length() < 2) { // base case
 return true;
 } else { // recursive case
 if (s[0] != s[s.length() - 1]) {
 return false;
 }
 string middle = s.substr(1, s.length() - 2);
 return isPalindromes(middle);
 }
}
Announcements

• Homework 2 due on Wednesday at **5PM**
• Homework 1 grades will be released by your section leader on or before Wednesday
• Your partner (if you choose to have one) **must** be in your section, and you should submit together through Paperless
• Alternate exams have been scheduled – should have received an email
• Shreya's OH changeup
 – Tuesday, 8:30-10:30AM
 – Wednesday, 9:30-10:30AM
 – Both open to SCPD and non-SCPD students, sign up on QueueStatus (link on sidebar of website), be prepared to use Google Hangouts
int mystery(int n) {
 if (n < 10) {
 return (10 * n) + n;
 } else {
 int a = mystery(n / 10);
 int b = mystery(n % 10);
 return (100 * a) + b;
 }
}

Q: What is the result of: mystery(348) ?
 A. 3828 B. 348348 C. 334488 D. 80403 E. none
Multiple calls tracing

```c
// call 1: 348
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}
```

```c
// call 2a: 34
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}
```

```c
// call 2b: 8
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}
```

```c
// call 3a: 3
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}
```

```c
// call 3b: 4
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}
```
• Below is the "pseudocode" for finding Big O of a function
 – Note that this is not real code; this is to show the recursive nature of finding Big O
 – Self-similarity: find Big O of smaller code blocks and combine them
 – This Big O pseudocode doesn't cover function calls and some other cases (for pedagogical purposes) – thought experiment to expand this

```python
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```
def findBigO(codeSnippet):
 if codeSnippet is a single statement:
 return O(1)
 if codeSnippet is loop:
 return number of times loop runs * findBigO(loop inside)
 for codeBlock in codeSnippet:
 return the sum of findBigO(codeBlock)
findBigO(codeSnippet):
 if codeSnippet is a single statement:
 return O(1)
 if codeSnippet is loop:
 return number of times loop runs * findBigO(Loop inside)
 for codeBlock in codeSnippet:
 return the sum of findBigO(codeBlock)
findBigO(codeSnippet):
 if codeSnippet is a single statement:
 return O(1)
 if codeSnippet is loop:
 return number of times loop runs * findBigO(loop inside)
 for codeBlock in codeSnippet:
 return the sum of findBigO(codeBlock)
Finding Big O: Recursive Call

```python
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```
Finding Big O Recursively

```python
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}

cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```python
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}

cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```cpp
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}

cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

findBigO(codeSnippet):
 if codeSnippet is a single statement:
 return O(1)
 if codeSnippet is loop:
 return number of times loop runs * findBigO(loop inside)
 for codeBlock in codeSnippet:
 return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
 for (int j = 3; j <= 219; j++) {
 cout << "sum: " << i + j << endl;
 }
}

cout << "Have a nice Life!" << endl;
Finding Big O Recursively

findBigO(codeSnippet):
 if codeSnippet is a single statement:
 return O(1)
 if codeSnippet is loop:
 return number of times loop runs * findBigO(loop inside)
 for codeBlock in codeSnippet:
 return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
 for (int j = 3; j <= 219; j++) {
 cout << "sum: " << i + j << endl;
 }
}

cout << "Have a nice Life!" << endl;
Finding Big O Recursively

```cpp
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```

```cpp
define (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
```

```cpp
cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```python
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:  # O(N^2)
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)  # O(1)

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}

cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```python
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock) + O(N^2)

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}

cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```python
def findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```

```python
for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
```

`cout << "Have a nice Life!" << endl;`
Finding Big O Recursively

```python
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)  O(N^2) + O(1)
```

```python
for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
```

```python
cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```cpp
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```

```cpp
for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
```

final result: $O(N^2)$

```cpp
cout << "Have a nice Life!" << endl;
```
power exercise

• Write a function `power` that accepts integer parameters for a base and exponent and computes base ^ exponent.

 – Write a recursive version of this function (one that calls itself).
 – Solve the problem without using any loops.

 – How is this problem self-similar?
 – What is the minimum amount of work?
 – How can we make the problem simpler by doing the least amount of work?
 – What is our stopping point (base case)?
power exercise

• Write a function `power` that accepts integer parameters for a base and exponent and computes base \(^\text{exponent}\).

 – Write a recursive version of this function (one that calls itself).
 – Solve the problem without using any loops.

 – How is this problem self-similar? Realize \(x^n = x \times x^{n-1}\)
 – What is the minimum amount of work?
 – How can we make the problem simpler by doing the least amount of work?
 – What is our stopping point (base case)? \(n = 0\)
 • Why not \(n = 1\)?
// Returns base ^ exp.
// Assumes exp >= 1.
int power(int base, int exp) {
 if (exp == 1) {
 return base;
 } else {
 return base * power(base, exp - 1);
 }
}
The call stack

- Each previous call waits for the next call to finish.

```cpp
// first call:  5    3
int power(int base, int exp) {
    if (exp == 1) {
        // second call:  5    2
        return base;
    } else {
        // third call:  5    1
        return base * power(base, exp - 1);
    }
}
```

```cpp
// cout << power(5, 3) << endl;
```
• The real, even simpler, base case is an exp of 0, not 1:

```c
int power(int base, int exp) {
    if (exp == 0) {
        // base case; base^0 = 1
        return 1;
    } else {
        // recursive case: x^y = x * x^(y-1)
        return base * power(base, exp - 1);
    }
}
```

– **Recursion Zen**: The art of properly identifying the best set of cases for a recursive algorithm and expressing them elegantly. Opposite is **arms-length recursion** *(our informal term)*
• **precondition**: Something your code *assumes is true* when called.

 – Often documented as a comment on the function's header:

    ```
    // Returns base ^ exp.
    // **Precondition**: exp >= 0
    int power(int base, int exp) {
    ```

 – Stating a precondition doesn't really "solve" the problem, but it at least documents our decision and warns the client what not to do.

 – What if the caller doesn't listen and passes a negative power anyway? What if we want to actually *enforce* the precondition?
error(expression);

– In Stanford C++ lib's "error.h"
– Generates an exception that will crash the program, unless it has code to handle ("catch") the exception.
– alternative: throw *something*
 • *something* can be an int, a string, etc.
• Why would anyone ever want a program to crash?
// Returns base ^ exp.
// Precondition: exp >= 0
int power(int base, int exp) {
 if (exp < 0) {
 throw "illegal negative exponent";
 } else ...
 ...
}
An optimization

- Notice the following mathematical property:
 \[3^{12} = 9^6 \]
 \[= (3^2)^6 \]
 \[= ((3^2)^2)^3 \]

- When does this "trick" work?
- How can we incorporate this optimization into our pow code?
- Why bother with this trick if the code already works?
// Returns base ^ exp.
// Precondition: exp >= 0
int power(int base, int exp) {
 if (exp < 0) {
 throw "illegal negative exponent";
 } else if (exp == 0) {
 // base case; any number to 0th power is 1
 return 1;
 } else if (exp % 2 == 0) {
 // recursive case 1: x^y = (x^2)^(y/2)
 return power(base * base, exp / 2);
 } else {
 // recursive case 2: x^y = x * x^(y-1)
 return base * power(base, exp - 1);
 }
}