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Recursive Backtracking II 
 

Solving the Eight Queens Problem 

The Eight Queens Problem is a classic programming puzzle that asks whether it’s possible 
to place eight queens on an 8 x 8 chessboard in such a way that they can all coexist 
without attacking each other.  Placing nine queens on an 8 x 8 is impossible—there’s a 
pigeonhole principle argument against it, for at least two queens would always need to 
occupy the same column.  But it’s not immediately obvious whether eight queens can be 
placed on an 8 x 8 board, nor is it obvious whether N queens can be placed on an N x N 
board in general. 

 
One approach—by far the most common programmatic one I know of—uses recursive 
backtracking to discover a solution, and that approach is spelled out on the next page: 
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static bool solve(QueensDisplay& display, Grid<bool>& board, int col) { 
    
 if (col == board.numCols())return true; 
 
 for (int rowToTry = 0; rowToTry < board.numRows(); rowToTry++) { 
    display.considerQueen(rowToTry, col); 
     if (isSafe(board, rowToTry, col)) { 
       board[rowToTry][col] = true; 
        display.provisionallyPlaceQueen(rowToTry, col); 
         if (solve(display, board, col + 1)) { 
          display.permanentlyPlaceQueen(rowToTry, col); 
          return true; 
         } 
         board[rowToTry][col] = false; 
     } 
    display.removeQueen(rowToTry, col); 
  } 
  
   return false; 
} 
 
static void solve(QueensDisplay& display, Grid<bool>& board) { 
 solve(display, board, 0); 
} 
 

The second of the two versions is called on an empty board, and the first one implements 
the recursive backtracking.  Each call to solve assumes that queens have been placed in 
columns 0 through col – 1 in a configuration that allows them all to coexist peacefully. 
The solve call systemically searches its own column for a row where yet another queen 
can be placed without introducing a conflict, and then recurs on col + 1.  If the recursive 
call on col + 1 returns true, then that true is immediately propagated up to whoever 
called us.  If it returns false, we backtrack by lifting the queen we placed and advancing 
on to higher rows.  Only when solve has tried to extend the partial solution it inherited in 
every way possible—and failed every time—does it return false. 
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Solving SuDoKu Puzzles [idea by Julie Zelenski] 

Recursive backtracking can also be used to solve SuDoKu puzzles by systematically 
considering every single way to legitimately place a number in some open square that, at 
least for the moment, works, and then recurring on the same board to see if that decision 
was a good one. 
 

 
static bool solve(SuDoKuDisplay& display, Grid<int>& board) { 
 int row, col; 
 if (!findLocation(board, row, col)) return true; 
     
  for (int digit = 1; digit <= 9; digit++) { 
   if (isLegal(board, row, col, digit)) { 
      board[row][col] = digit; 
       display.provisionallyPlaceNumber(row, col, digit); 
        if (solve(display, board)) { 
          display.permanentlyPlaceNumber(row, col); 
          return true; 
        } 
       board[row][col] = kEmpty; 
       display.liftNumber(row, col); 
     } 
  } 
  
  return false; 
} 
 

For those new to SuDoKu, the challenge is to fill in all empty squares with numbers 1 
through 9 so that each digit appears exactly once per row, once per column, and once per 
3 x 3 block.  There is no denying the above is classic recursive backtracking—even if it’s 
very brute force and not very intelligent. 
 
isLegal decides, given the current state of the board, whether digit can be placed at the 
identified position without violating the rules.  The suite of SuDoKuDisplay methods 
update the graphics window to convey whether we’re considering, committing to, or 
abandoning some choice.  The only function students find confusing is 
findEmptyLocation.  From context, it appears to return a true if and only if there’s 
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some unassigned slot, but what isn’t clear is that, when true is returned, row and col are 
updated (by reference) to some empty location’s coordinates.  It becomes clearer if you see 
the code for it, so here it is: 
 

static const int kEmpty = 0; 
static bool findLocation(const Grid<int>& board, int& row, int& col) { 
  for (row = 0; row < board.numRows(); row++) { 
    for (col = 0; col < board.numCols(); col++) { 
       if (board[row][col] == kEmpty) return true; 
     } 
  } 
     
   return false; 
} 

 
This particular implementation just searches top-to-bottom, left-to-right until it finds 
something empty.  It’s fairly naïve and results in a solution that takes its time for all but the 
most trivial of boards.  However, it’s possible to search not just for any empty square, but for 
the empty square that is more constrained than any other.  We can use the isLegal routine 
to brute-force double-for loop over all locations, keeping track of the location offering the 
smallest number of options.  There’s no sense, for instance, fussing over all of the empty cells 
in the upper left corner of the board if there’s some cell in the lower right that can only be 
assigned one number. 
 

static const int kNumDigits = 9; 
static int countNumOptions(const Grid<int>& board, int row, int col) { 

 int numOptions = 0; 
  for (int digit = 1; digit <= kNumDigits; digit++) { 
  if (isLegal(board, row, col, digit)) 
     numOptions++; 
 } 
 return numOptions; 
} 
 
static bool findLocation(const Grid<int>& board, int& row, int& col) { 
 int smallestNumOptions = kNumDigits + 1; 
  for (int r = 0; r < board.numRows(); r++) { 
     for (int c = 0; c < board.numCols(); c++) { 
       if (board[r][c] == kEmpty) { 
          int numOptions = countNumOptions(board, r, c); 
            if (numOptions < smallestNumOptions) { 
             row = r; 
               col = c; 
             smallestNumOptions = numOptions; 
            } 
         } 
      } 
   } 
     
  return smallestNumOptions <= kNumDigits; 
} 
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Regular Expressions and String Matching [prose by Jerry Cain] 

A regular expression—or regex, for short—is a string used to pattern match words in the 
English language.  The simplest regular expressions consist of just lowercase letters, but 
they’re also allowed to contain one or more character sets like [a-z], and the presence of 
[a-z] in a regular expression matches any lowercase letter.  Here’re a few examples of 
regular expressions and the English words that match them: 
 

 regex matches 
 and and 
 [a-z]lur blur, slur 
 wil[a-z] wild, wile, wili, will, wily, wily 
 m[a-z][a-z]m maim, malm, marm, mumm 
 x[a-z][a-z][a-z]x xerox 
 [a-z]x[a-z] axe, exo, oxo, oxy 
 

The notion of a character set can be generalized to specify one or more smaller ranges to 
represent sets of lowercase letters, as with: 
 

 character set possible characters 
 [a-g] abcdefg 
 [c-gmw-z] cdefgmwxyz 
 [aeiou] aeiou 
 [x-za-bp] abpxyz 
  

Note that isolated characters can sit among zero or more ranges to compactly express a 
small set of characters, as I do with the three of the four sample character sets above.  This 
notation allows us to match a more constrained set of English words: 
 

 regex matches 
 m[aeiou][x-z] max, may, mix, miz, moy, moz, mux 
 z[a-cor-z][a-gkn-p] zag, zap, zoa, zoo 

 [a-c][d-g][h-m][n-q][r-z] adios, agios, aglow, below 
 
Finally, an asterisk—i.e., one of these things: '*'—can follow any character or character 
set as an instruction that the single character or character set preceding it can be skipped 
and go unmatched, be matched exactly once, or be matched an arbitrarily large number of 
times. 
 
What can regexes look like now, and what strings do they match? Here are some 
examples: 
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• aa[a-z]* matches all those words that begin with aa, including aa, aah, aahed, 
aardvark, aardvarks, and aasvogel.  The [a-z]* portion of aa[a-z]* can match 
the empty string, a single letter, or an arbitrary string of length 2 or more. 

• [a-z]*zz[a-z]* matches all of those words that contain a zz somewhere, 
including buzz, jazziest, puzzle, sizzle, snazzy, and zyzzyvas.  

• [a-g]* matches all those words that can be formed using just the first seven letters 
of the alphabet, including begged, cabbage, deface, defaced, feedbag, and gaffed.  
Musicians love these words, because they can be formed using just the notes of a C 
major scale. 

• [aeiou][aeiou][aeiou][aeiou]* matches all of the English words of length 
3 or more that contain only the five principal vowels.  Only one word matches: eau.  
Gotta love the French. 

• [a-z]*a[a-z]*e[a-z]*i[a-z]*o[a-z]*u[a-z]*y[a-z]* matches the six 
words that contain all six vowels (this time counting y) where a, e, i, o, u, and y 
appear in that order.  Congratulations to abstemiously, adventitiously, facetiously, 
and sacrilegiously for being part of this distinguished set. 

 
For this exercise, we’ll work through the decomposition of a recursive backtracking 
function called matches that decides whether a regex matches a string of lowercase letters 
(presumably a word in the English language). 
 
Our implementation of matches will benefit from a helper function called expand, which 
takes a single character set and returns a sorted string of all of the lowercase letters it 
expands to, as with: 
 

 set expand(set) 
 [a-g] abcdefg 
 [x-ya-g] abcdefgxy 

 [a-empw-z] abcdempwxyz 
 [aeiou] aeiou 
 [a-ea-ed-fa-eeeee] abcdef 
 
Our implementation needs to handle redundancies like those you see in the last example 
above, and the string of lowercase letters returned should be sorted in lexicographic order.  
We’ll assume that the first character is always '[', the last character is always ']', there’s 
at least one character between the '[' and the ']', and that the character set identifies 
only lowercase letters and is otherwise well formed.  
 
(This part doesn’t involve recursion, but it’s fun to implement anyway, since we can only 
assume it’ll help out with the implementation of matches.) 
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static string expand(const string& set) { 
 Set<char> charset; 
 int i = 1; 
  while (i < set.size() - 1) { 
  char low = set[i]; 
     char high = set[i + 1] == '-' ? set[i + 2] : low; 
     i += set[i + 1] == '-' ? 3 : 1; 
     for (char ch = low; ch <= high; ch++) charset += ch; 
   } 
 
  string expanded; 
   for (char ch: charset) expanded += ch; 
  return expanded; 
} 

 
We’ll also benefit from a second helper function called split, which takes a nonempty 
regular expression and pulls off the portion that might be matched by a word’s first 
character.  We’ll code to this interface: 
 

 static void split(const string& regex, string& first,  
                   bool& starred, string& rest); 
 

Assuming that first and rest are strings and starred is a bool, the following 
illustrates how first and rest should be populated for the provided regexes: 

 
 regex split(regex, first, starred, rest) 
 awxyz first gets "a", starred gets false, rest gets "wxyz" 
 [ae]*w* first gets "[ae]", starred gets true, rest gets "w*" 
 z first gets "z", starred gets false, rest gets "" 

 z* first gets "z", starred gets true, rest gets "" 
 

To be clear, starred is populated with true if any only if the leading portion placed in 
first is optional and repeatable, and rest is populated with everything beyond first 
and, if present, the companion *. 

 
 static void split(const string& regex, string& first,  
                   bool& starred, string& rest) { 

 int pos = !isalpha(regex[0]) ? regex.find(']') + 1 : 1; 
  first = regex.substr(0, pos); 
  starred = pos < regex.size() && regex[pos] == '*'; 
  if (starred) pos++; 
  rest = regex.substr(pos); 
} 

 
Finally, using our expand and split functions, we can more easily implement matches, 
which uses recursive backtracking to decide whether the supplied regex matches the 
supplied word.  Because backtracking is required, you should only make as many recursive 
calls as needed in order to produce a true or false.  (Code is on the next page!) 
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static bool matches(const string& regex, const string& word) { 
 if (regex.empty()) return word.empty(); 
 
 bool starred; 
 string first, rest; 
 split(regex, first, starred, rest); 
 
 string set = first.size() == 1 ? first : expand(first); 
 if (word.empty() || set.find(word[0]) == string::npos) { 
    return starred && matches(rest, word); 
  } 
 
 // consider first character being consumed by first 

  if (matches(rest, word.substr(1))) return true; 
  if (!starred) return false; 

  return matches(rest, word) || matches(regex, word.substr(1)); 
} 
 

There are four ways we can arrive at another call to matches.  
 

• First, if word is empty or if word[0] doesn't match the first surfaced by split, 
then we would only match if the pattern is starred (allowing for zero occurrences 
of first) and if the rest matches the full word.  

• A second option should the first not work out: match word[0] to first (we know 
it does, else we wouldn’t have gotten this far) and see if rest aligns with 
word.substr(1). 

• Options three and four exist, but only if first was starred: We consume the 
leading character of word but keep first in regex (exercising the option 
that '*' allows for two or more matches) or skip first entirely and try to 
match rest to the full word. 

 


