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Memoization 
 

Let’s review why our first recursive implementation of fib was so dreadfully slow.  Here’s 
the code again, updated to make use of the long long data type so that much, much 
larger Fibonacci numbers can, in theory and given an infinite amount of time, be 
computed: 

 
static unsigned long long fib(int n) { 
 if (n < 2) return n; 
 return fib(n - 1) + fib(n - 2); 
} 
 

The code mirrors the inductive definition, but because each call to fib usually gives birth 
to two more, the running time grows exponentially with respect to n. 
 
One key observation: the initial recursive call leads to many (many, many) repeated 
recursive calls.  The computation of the 40th Fibonacci number, for instance, leads to: 
 

o 1 call to fib(39) 
o 2 calls to fib(38) 
o 3 calls to fib(37) 
o 5 calls to fib(36) 
o 8 calls to fib(35) 
o 13 calls to fib(34) 
o 21 calls to fib(33) 
…. 

  
It’s sad that fib(33) gets called 21 different times, because it builds the answer from 
scratch, even though the answer is always the same.  The implementation is farcically slow 
because it spends virtually all of its time re-computing the same results over and over again. 
 
One technique to overcome the repeated sub-problem issue is to keep track of all 
previously computed results in a Map, and to consult the Map to see if a partial result has 
been computed before moving on to the binary recursion. 
 
The code that appears at the top of the next page is an extension of the above, save for the 
key addition that a cache has been threaded throughout the implementation so that 
previously computed results can be stored and retrieved very, very quickly: 
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static unsigned long long fib(int n, Map<int, unsigned long long>& cache) { 
 if (cache.containsKey(n)) return cache[n]; 
 unsigned long long result = fib(n - 1, cache) + fib(n - 2, cache); 
 cache[n] = result; 
 return result; 
} 
 
static unsigned long long fib(int n) { 
 Map<int, unsigned long long> cache; 
 cache[0] = 0; 
 cache[1] = 1; 
 return fib(n, cache); 
} 

 
Notice the introduction of a Map<int, unsigned long long>.  The base-case section 
of the recursive function now checks the cache, which initially houses the traditional base 
case results, but over time grows to include everything that’s ever been computed during 
the lifetime of a single call. 
 
All of a sudden, what used to be an exponential-time algorithm now runs in time that’s 
proportional to n.  This technique of caching previously generated results is called 
memoization.  It looks like the word memorization, but it’s missing the r.  Apparently the 
word is derived from memorandum, not memorization.  At least that’s what Wikipedia 
says. J 
 
One key observation to point out: memoization is only useful when there are repeated sub-
problems, but it doesn’t do much when all or nearly all recursive calls are unique.  That 
means that fib benefits from memoization, but functions like listPermutations and 
listSubsets (each of which produces output of length n! and 2n, respectively) do not. 
 
 


