
CS106X Handout 21

Autumn 2019 October 16th, 2019

CS106X Practice Midterm

Exam Facts:

When: Thursday, October 24th from 7:00 - 8:30 p.m.
Where: Bishop Auditorium

Coverage

The exam is open-book, open-note, closed-electronic-device. We will not be especially
picky about syntax or other conceptually shallow ideas. We are simply looking for a clear
understanding of core programming concepts. As needed, we will present the prototypes
of functions and methods we expect you’ll need.

Writing code on paper in a relatively short time period is not quite the same as working
with the compiler and a keyboard. We recommend that you practice writing out solutions
to these practice problems—starting with a blank sheet of paper—until you’re certain you
can write code without a computer to guide you.

This practice midterm draws its problems from a few different midterms I’ve given in past
years. Understand that I’m under no obligation to imitate the format of this exam, though.
I’m simply presenting this practice midterm to give you a sense of what types of problems
have been given on CS106X midterms in previous years.

Problem 1: Word Ladders, Take II

For Assignment 2, you implemented a breadth-first search algorithm that generates the
shortest word ladder between two words. The pseudo-code presented in the assignment
handout was this:

create initial ladder (just start word) and enqueue it
 while queue is not empty
 dequeue first ladder from queue (this is shortest partial ladder)
 if top word of this ladder is the destination word
 return completed ladder
 else for each word in lexicon that differs by one char from top word
 and has not already been used in some other ladder
 create copy of partial ladder
 extend this ladder by pushing new word on top
 enqueue this ladder at end of queue

An implementation coded to specification never uses a previously used word to extend a
partial ladder. Stated differently, each word—whether or not it ultimately contributes to
the word ladder of interest—has a unique predecessor.

 2

a. Imagine that you have access to a Map<string, string> called predecessors.
Each key maps to the word preceding it in all partials ever generated during a search.
Given references to the start word, the finish word, and this predecessors
map, it’s possible to reconstruct and return the word ladder connecting start to
finish. Implement the reconstruct function, which does exactly that.

static Vector<string> reconstruct(const string& start, const string& finish,
 const Map<string, string>& predecessors) {

Your Assignment 2 implementation made use of a Queue<Vector<string>> to
maintain a first-in-first-out list of all the partials ever generated during a search. It’s
possible to reduce the memory footprint of the breadth-first search by relying on a
Queue<string> (where each string is the last word of a partial word ladder), provided
you maintain a predecessors map along the way as well. Restated, it isn’t necessary to
(and for this problem you shouldn’t) maintain a queue of partial word ladders, since all
partial word ladders are implied by their last word and the information in a
predecessors map.

b. Using the reconstruct function from the previous page, implement the

findShortestWordLadder function, which accepts references to start and
finish (you can assume they’re each strings of the same length) and returns the
shortest word ladder between them (or the empty Vector<string> if there isn’t one).
You should rely on the following function (you may assume it has already been
implemented for you):

 static Vector<string> generateAllNeighbors(const string& word,
 const Lexicon& english);

which returns all English words that differ from the provided one by exactly one letter.

static Vector<string> generateShortestWordLadder(const string& start,
 const string& finish,
 const Lexicon& english) {

 3

Problem 2: Autocorrect

We all know that when our big thumbs type out big words on our smart phones, we
mistype and spell some words incorrectly. We also know the phone itself presents one or
more words it thinks we meant to type. If, for instance, we’re texting and type out
"tounf", the phone might suggest "young", because it knows that "tounf" isn’t a word
but that 't' is right next to 'y' and 'f' is
right next to 'g' on the keypad. This
particular suggestion required two changes,
but there aren’t any words in the English
language that are one character away from
"tounf", so "young" is a reasonably
good suggestion (as are "round" and
"found").

Implement the recursive ls function (ls is
short for listSuggestions), which
given a string, lists all of the words in the
English language that require no more than
a threshold number of substitutions. Your implementation should code to the following
prototype:

 static void ls(const string& str, const Lexicon& english,
 const Map<char, string>& alternatives, int maxChanges);

str may or may not be a word in the English language, but if it is, it should be printed.
Other words in the language should be printed if they require at most maxChanges letters
to be replaced by their neighbors. alternatives has 26 keys—one for each lowercase
letter—and each maps to a string of all of the keyboard letters immediately adjacent to it—
that is, what we consider reasonable alternatives. For example, 'g' maps to "tyfhcvb",
because those seven letters represent what a big thumb might have intended to hit when it
tapped the 'g'.

 static void ls(const string& str, const Lexicon& english,
 const Map<char, string>& alternatives, int maxChanges) {

 4

Problem 3: Valency

Valency is a puzzle one solves by repeatedly connecting pairs of circles. Any two circles
can be vertically or horizontally linked one or more times, provided there are no other
circles in between them. Each circle has an associated valency specifying the exact
number of connections one must draw between it and other circles. The goal of the puzzle
is to connect circles to one another so that all valency constraints are satisfied.

One such puzzle is presented
on the left, and one of its
solutions is presented on the
right. This particularly solution
makes use of 1 triple, 2
double, and 6 single
connections—a total of 13 in
all—to satisfy a combined
valency constraint of 26.

The puzzle can be modeled as
a Grid<int>, where a zero
reflects the absence of a circle,
and a positive value reflects

the presence of one.

To help simplify the problem, you should rely on the services of a few data types and
helper functions. In particular, you should assume that the following two data types have
been defined for you and that operators like < have been overloaded so that each may be
stored as entries in Sets and as keys in Maps.

You can also assume the following two functions have already been implemented for you:

static int computeValencySum(const Grid<int>& valencies);
static Set<coord> getCandidates(const coord& location, const Grid<int>& valencies);

computeValencySum returns the sum of all of the supplied Grid’s entries, and
getCandidates returns the Set<coord> of all other circles with nonzero valency that
location could potentially be connected with given the state of the supplied Grid.
(Your implementation is not required to use both of these, but they’re there if they help.)

struct coord {
 int row;
 int col;
};

struct connection {
 coord first;
 coord second;
};

 5

Implement a recursive backtracking solve routine that returns true if and only if the
referenced Valency puzzle—encoded as a Grid<int> by the name of valencies—can
be solved. When true is returned, the referenced connections should contain all of
the connections (mapped to their multiplicity) that solve the puzzle. For the puzzle
presented above, solve should return true and update the referenced Map with 9
connections as keys. 6 of the 9 connections should map to 1 (because 6 of the nine
pairings are singly connected), 2 of the 9 should map to 2 (because two pairs are doubly
connected), and the 9th connection should map to a 3. (Be sure to remove any
temporarily inserted connections that ultimately map to 0.) If false is returned, then
the state of the referenced Map is irrelevant.

static bool solve(Grid<int>& valencies, Map<connection, int>& connections) {

