
CS106X Handout 22 
Autumn 2019 October 21st, 2019 

Hashing and HashMaps 
 

Chapter 15 discusses a few ways we might implement the Map introduced during the 
second week of the course.  You should be reading Chapter 15 now, focusing on high-level 
concepts, cognizant of the fact that the HashMap we implement in lecture is more 
advanced than anything you’ll read in Chapter 15.   
 
Truth be told, the Map we’ve been using is backed by a binary search tree, and we won’t 
learn about those until Wednesday or next Monday.  Fortunately, there are many choices 
for the internal representation, and Chapter 15 uses the Map’s interface as a vehicle for 
learning about lookup tables, hashing, and hash tables.  We’re in a better position to learn 
about hashing and hash tables because of today’s work with linked lists, so we’re going 
with the hashing approach first.  To be clear we’re presenting a different Map 
implementation than the version you’ve been coding against, I’m calling this version the 
HashMap (and so does the CS106B/X C++ Library).  We’re implementing to the same exact 
interface, so you’ll see value in what we’re covering during the rest of today’s lecture. 
 
hash-map.h 

template <typename Key, typename Value> 
class HashMap { 
public: 
 HashMap(int sizeHint = 10001); 
 ~HashMap(); 
     
  bool isEmpty() const { return size() == 0; } 
   int size() const { return count; } 
     
  bool containsKey(const Key& key) const; 
   void put(const Key& key, const Value& value); 
   Value get(const Key& key) const; 
   Value& operator[](const Key& key); 
     
private: 
   struct node { 
    Key key; 
    Value value; 
    node *next; 
   }; 
     
   node **buckets; 
   int numBuckets; 
   int count; 
  int hash(const Key& key) const; 
   node *ensureNodeExists(const Key& key); 
  const node *findNode(const Key& key) const; 
}; 
 
#include "hash-map-impl.h" 

 

You’ll notice that the interface here 
is identical (at least to the extent that 
I implement it) to that of the Map. 



  2  

The two surprises above: 
 

• The interface doesn’t commit to key and value types, but instead structures the 
HashMap to be templated on two types determined at declaration time.  The 
placement of the template keyword before the class declaration informs the 
compiler that what follows is incomplete, and that it can’t be fully processed (beyond 
obvious parsing needs).  It’s only when client code #includes  
hash-map.h and declares something like, say, HashMap<char, Vector<int>>, 
that the compiler associates Key and Value with char and Vector<int> and 
expands the definition to be char and Vector<int>-specific for that one 
instantiation. 

• Because it’s a template, hash-map.h #includes hash-map-impl.h at the 
bottom of the file!  Because all method implementations are also templated, the full 
implementation needs to be visible to the file that declares a HashMap.  The 
#include mechanism is little more than search and replace.  During compilation, 
the #include "hash-map-impl.h" line is removed and replaced with the 
contents of the hash-map-impl.h file, and processed as if the code were 
physically typed in "hash-map.h" all along. 

 
hash-map-impl.h 

In most ways, implementing a template is like implementing a regular class, where you 
operate as if the template parameters—in this case, Key and Value—are authentic data 
types.  You sometimes need to make assumptions about how Key and Value behave and 
what operations they support, and when you do, those prerequisites would normally be 
surfaced in the official interface file documentation.  In this case, we require that Key play 
well with operator== and that it be hashable, using either some library routines, or 
through some hashing code we hand-roll ourselves. 

 
template <typename Key, typename Value> 
HashMap<Key, Value>::HashMap(int sizeHint) { 

 if (sizeHint <= 0)  
  error("size hint passed to HashMap constructor must be positive."); 

  count = 0; 
   numBuckets = sizeHint; 
   buckets = new node *[numBuckets]; 
   for (int i = 0; i < numBuckets; i++) buckets[i] = NULL; 
} 
 
template <typename Key, typename Value> 
HashMap<Key, Value>::~HashMap() { 
 for (int i = 0; i < numBuckets; i++) { 
    node *curr = buckets[i]; 
      while (curr != NULL) { 
       node *next = curr->next; 
         delete curr; 
        curr = next; 
      } 
  } 
 delete[] buckets; 
} 



  3  

template <typename Key, typename Value> 
bool HashMap<Key, Value>::containsKey(const Key& key) const { 
  return findNode(key) != NULL; 
} 
 
template <typename Key, typename Value> 
void HashMap<Key, Value>::put(const Key& key, const Value& value) { 
  ensureNodeExists(key)->value = value; 
} 
 
template <typename Key, typename Value> 
Value HashMap<Key, Value>::get(const Key& key) const { 
   const node *found = findNode(key); 
   return found == NULL ? Value() : found->value; 
} 
 
template <typename Key, typename Value> 
Value& HashMap<Key, Value>::operator[](const Key& key) { 
   return ensureNodeExists(key)->value; 
} 
 
template <typename Key, typename Value> 
int HashMap<Key, Value>::hash(const Key& key) const {   
  

implementation omitted, as it uses lots of specialized blocks of code, depending on whether or not 

Key—the type being hashed to a number between 0 and numBuckets - 1, inclusive—is int, 
unsigned long long, char, double, std::string, etc. 

 
} 
 
template <typename Key, typename Value> 
typename HashMap<Key, Value>::node * 
HashMap<Key, Value>::ensureNodeExists(const Key& key) { 
   node *found = const_cast<node *>(findNode(key)); 
   if (found == NULL) { 
    found = new node; 
      found->key = key; 
     found->value = Value(); 
      int hashcode = hash(key); 
     found->next = buckets[hashcode]; 
      buckets[hashcode] = found; 
     count++; 
   } 
     
   return found; 
} 
 
template <typename Key, typename Value> 
const typename HashMap<Key, Value>::node * 
HashMap<Key, Value>::findNode(const Key& key) const { 
   int hashcode = hash(key); 
   const node *curr = buckets[hashcode]; 
   while (curr != NULL && !(curr->key == key)) { 
    curr = curr->next; 
   } 
   return curr; 
} 


