
CS106X Handout 23A
Autumn 2019 October 23rd, 2019

Section Handout Addendum

During staff meeting on Monday, the section leaders mentioned that many of you were
eager to see more recursive backtracking questions. Here are a bunch of additional
problems and their solutions. All of them are drawn from previous section handouts,
midterms, and final exams.

Problem 1: Scheduling Movies

The Academy Awards are fast approaching, and you’ve been so busy with school and
summer internships that you’ve not seen a single movie all year. You’ve decided to set
aside a single Saturday to see a predefined list of nominated movies, and you’re hoping
there’s some way to fit them all in. Given a dictionary of movies (each bundling the title,
the length in minutes, and its various start times into a single struct) and the titles you
want to see, write a function that decides whether or not it’s possible to see everything you
want to see in any given day. Of course, you can never be in two different theaters at the
same time, but for simplicity, assume that you can attend a movie that begins at the same
time another movie ends. Write a function that returns true if and only if it’s possible to
see all the movies you want to see, and false otherwise. Notice that you needn’t
generate the schedule itself—just a yes or no as to whether a schedule exists.

Your routine should return as soon as it can produce a true or false, as all of our
recursive backtracking examples have.

struct interval {
 int start;
 int end;
};

static bool intervalsOverlap(const interval& one, const interval& two) {
 return ((one.start >= two.start && one.start < two.end) ||
 (two.start >= one.start && two.start < one.end));
}

struct movie {
 string name;
 int duration; // in minutes
 Vector<int> showTimes; // each in minutes since midnight
};

static bool canSchedule(Vector<string>& titles, Map<string, movie>& schedule);

Problem 2: Arithmetic Puzzles

Determine whether it’s possible to combine all of the numbers in the given Vector<int>
using simple addition, subtraction, and multiplication. It’s possible, for example, to
combine the numbers 2, 4, 6 and 8 to get 0. Here’s how:

 2

8 – 6 * 2 – 4 equals 0

Given the numbers 1, 4, 7, and 9, we can form the number 20. Here’s how:

4 – 1 * 9 – 7 equals 20

Note that all operators have equal precedence, and no parentheses are allowed.

Write the combine function, which takes a Vector<int> of numbers and a target value
and returns true if and only if all of the operands can be combined using equal-precedent
addition, subtraction, and multiplication to form the given target. By equal precedent, we
mean don’t respect the normal order of operations where multiplication takes higher
precedence than addition and subtraction. Just assume all expressions are evaluated from
left to right (so that, for example, 4 – 2 * 2 is 4 and not 0.)

static bool combine(Vector<int>& numbers, int target);

Problem 3: Beehive Puzzle

You’re given six hexagonal games pieces, where each piece has a series of six letters, one
per edge, around its perimeter. You’re interested in finding an arrangement of the six
pieces so that all six wrap a hollow center, and all letters on adjacent edges match.

So, if you’re given the following Vector of six pieces:

you should be able to permute and rotate as necessary in
order to discover the arrangement on the right.

Write a function called arrangementExists, which
takes a Vector of six strings, where each string
consists of the six characters along the perimeter of one
hexagonal piece. The order of the letters dictates the
clockwise ordering along the perimeter of the piece, but
the piece may be rotated by any multiple of 60 degrees if
it’ll help to produce a solution. arrangementExists
reports back a true or a false—true if and only if
some solution could be found. You don’t need to return

0 1 2 3 4 5

0
4

2

1 5
3

 3

what the solution is. You only need to return a yes or a no.

static bool arrangementExists(Vector<string>& pieces);

Solution 1: Scheduling Movies

static bool canScheduleMovie(const interval& proposed,
 const Vector<interval>& scheduled) {
 for (int i = 0; i < scheduled.size(); i++) {
 const interval& scheduledInterval = scheduled[i];
 if (intervalsOverlap(proposed, scheduledInterval)) {
 return false;
 }
 }
 return true;
}

static bool canSchedule(Vector<string>& titles, int count,
 Map<string, movie>& schedule, Vector<interval>& scheduled) {
 if (titles.size() == count) return true;
 if (!schedule.containsKey(titles[count])) return false;

 const movie& m = schedule[titles[count]];
 for (int i = 0; i < m.showTimes.size(); i++) {
 interval movieInterval = {
 m.showTimes[i], m.showTimes[i] + m.duration
 };
 if (canScheduleMovie(movieInterval, scheduled)) {
 scheduled.add(movieInterval);
 if (canSchedule(titles, count + 1, schedule, scheduled)) return true;
 scheduled.remove(scheduled.size() - 1);
 }
 }
 return false;
}

static bool canSchedule(Vector<string>& titles, Map<string, movie>& schedule) {
 Vector<interval> scheduled;
 return canSchedule(titles, 0, schedule, scheduled);
}

Solution 2: Arithmetic Puzzle

static bool combine(Vector<int>& numbers, int target, int current) {
 if (numbers.isEmpty()) return target == current;

 for (int i = 0; i < numbers.size(); i++) {
 int number = numbers[i];
 numbers.remove(i);
 if (combine(numbers, target, current + number) ||
 combine(numbers, target, current - number) ||
 combine(numbers, target, current * number)) return true;
 numbers.insert(i, number);
 }
 return false;
}

 4

static bool combine(Vector<int>& numbers, int target) {
 for (int i = 0; i < numbers.size(); i++) {
 int current = numbers[i];
 numbers.remove(i);
 if (combine(numbers, target, current)) return true;
 numbers.insert(i, current);
 }
 return false;
}

Solution 3: Beehive Puzzle

static bool ae(Vector<string>& pieces, char start, char bridge) {
 if (pieces.size() == 0) return start == bridge;
 for (int j = 0; j < pieces.size(); j++) {
 string bridgingPiece = pieces[j];
 pieces.remove(j);
 for (int k = 0; k < 6; k++) {
 if (bridgingPiece[k] == bridge &&
 ae(pieces, start, bridgingPiece[(k + 4) % 6])) return true;
 }
 pieces.insert(j, bridgingPiece);
 }
 return false;
}

static bool arrangementExists(Vector<string> pieces) {
 string anchor = pieces[0];
 pieces.remove(0);
 for (int k = 0; k < 6; k++) {
 if (ae(pieces, anchor[k], anchor[(k + 4) % 6])) return true;
 }
 return false;
}

