
CS106X Handout 31 
Autumn 2019 November 4th, 2019 

Graphs and Graph Algorithms 
 

Chapter 181 works through a series of increasingly sophisticated representations of a graph, 
which is the most generic of all linked data structures.  As with all of our linked structures, 
the primary primitive is the node type, which carries all of the information about a 
particular entity—an airport, a street corner, a person within a larger social network—in the 
domain of interest.  As opposed to the other linked structures we’ve discussed, the links 
within graphs are modeled more elaborately—by a complementary arc type, which tracks 
the pair of node endpoints and the cost one incurs by crossing it. 
 
Here are the relevant data types, which very much imitate those used in Chapter 18. 

 
struct node { 
 string name; 
  int x, y; 
  Set<struct arc *> arcs; 
}; 
 
struct arc { 
  double cost; 
   node *from, *to; 
}; 
 
struct graph { 
  Set<node *> nodes; 
  Set<arc *> arcs; 
  Map<string, node *> index; 
}; 
 

Each node in the graph knows its name (e.g. "SFO", "Memorial Church", "CS106X", 
etc.).  For our purposes, we’ll require each node track its location within a graphics 
window, since we’ll be displaying them.  And each node knows all of the ways one can 
travel away from it.  That’s what’s tracked by a node’s set of arcs.  
 
Each arc knows how expensive it is, it knows what nodes it connects, and it even knows its 
directionality (e.g. it might encode that you can drive down a one-way street, or that you 
must take "CS106A" before you take "CS106B"). 
 
The graph keeps track of all of its nodes and all its arcs.  In particular, the arcs set within 
the graph is the union of all of arcs sets embedded within the nodes.  We store redundant 
copies of the nodes and the edges, because some graph algorithms are best framed in terms 
of nodes (but need to know about the arcs that connect them), and others are oriented 
around the arcs. 

 
1 We’re skipping Chapter 17, as it speaks about balancing strategies used to make sure the binary search trees 

are optimally structured so that our Sets run as quickly as possible. 



  2  

Chapter 18 includes a series of introductory algorithms to traverse graphs, but they’re all 
fairly straightforward in comparison to an algorithm—one credited to Edsgar W. Dijkstra—
that identifies the least expensive way to travel from one node to a second.  The algorithm 
is similar to the breadth-first search algorithm you used for the word ladder portion of 
Assignment 2, though it’s careful to recognize that individual arcs cost different amounts.  
That means we need to rely on a priority queue to keep track of all partial paths extending 
from the starting point. 
 

/** 
 * Function: findShortestPath 
 * -------------------------- 
 * Follows Dijkstra's algorithm to determine the shortest path 
 * connecting start and finish in the surrounding graph.  We assume 
 * that start and finish are different nodes. 
 */ 
static Vector<arc *> findShortestPath(node *start, node *finish) { 
 PriorityQueue<Vector<arc *>> pq; 
 Map<node *, double> shortestPathLengths; 
  shortestPathLengths[start] = 0.0; 
 
  for (arc *a: start->arcs) { 
    Vector<arc *> path; 
    path += a; 
    pq.enqueue(path, computePathCost(path)); 
  } 
 
  while (!pq.isEmpty()) { 
    Vector<arc *> best = pq.dequeue(); 
     const node *intermediate = best[best.size() - 1]->to; 
      if (shortestPathLengths.containsKey(intermediate)) continue; 
     if (intermediate == finish) return best; 
    double cost = computePathCost(best); 
    shortestPathLengths[intermediate] = cost; 
 
      for (arc *a: intermediate->arcs) { 
       if (shortestPathLengths.containsKey(a->to)) continue; 
        best += a; 
         pq.enqueue(best, computePathCost(best)); 
         best.remove(best.size() - 1); 
      } 
   } 
  
 // got here? then you depleted the priority queue without finding a path 
   return Vector<arc *>(); 
} 

 
Here are some key questions about the algorithm you should be able to answer: 
 

• Why do we need to wait for a full path from start to finish to be dequeued from the 
priority queue?  Can’t we just identify it as a full path before we enqueue it and 
save some time? 

• Why doesn’t the final for loop include a check for cycles? Restated, why don’t we 
confirm that a isn’t already in best before we execute best += a? 

• How and why does Dijskstra’s Algorithm break down if negative weights are 
permitted? 



  3  

 
Another canonical algorithm—one you’ve already seen while generating random mazes—
is one that finds the minimal spanning tree in an undirected graph.  A spanning tree is a 
cycle-free subset of a graph with the perk that you can still travel from any one node to 
another (provided you can in the original graph).   A minimal spanning tree is a spanning 
tree where the sum of the arcs is as small as possible.  
 
The following presents an implementation of Kruskal’s minimal spanning tree algorithm: 

 
/** 
 * Function: generateMinimumSpanningTrees 
 * -------------------------------------- 
 * Implements Kruskal's algorithm to construct a minimal 
 * spanning tree within the supplied graph. 
 */ 
static Set<arc *> generateMinimumSpanningTrees(graph& g) { 
  
 Vector<graph> forests(g.nodes.size()); 
  Map<node *, int> memberships; 
   int i = 0; 
  for (node *n: g.nodes) { 

  forests[i].nodes += n; // forest is a single node with no edges 
  memberships[n] = i++; 

  } 
 
  PriorityQueue<arc *> pq; 
  for (arc *a: g.arcs) { 
  pq.enqueue(a, a->cost); // queue edges up, lightest to heaviest 
 } 
 
  Set<arc *> mst; 
   while (!pq.isEmpty()) { 
    arc *lightest = pq.dequeue(); 
    if (memberships[lightest->from] == memberships[lightest->to]) { 
      cout << "Skipping edge (cost: " << lightest->cost << ") that "  
      << "would introduce a cycle." << endl; 
      } else { 
        cout << "Adding edge (cost: " << lightest->cost << ") to merge " 
      << "two forests." << endl; 
   mst.add(lightest); 
        int from = memberships[lightest->from];  
      int to = memberships[lightest->to]; 
        forests[from].nodes += forests[to].nodes; 
        forests[from].arcs += forests[to].arcs; 
        forests[from].arcs += lightest; 
       for (node *n: forests[to].nodes) { 
    memberships[n] = from; 
   } 
    } 
  } 
 
 return mst; 
} 

 
The first section creates a collection of n forests, where n is the number of nodes in the 
graph.  Each forest consists of a single node isolated from all others (much as all chambers 
were initially isolated from one another just as the maze-generator executable was starting 



  4  

out).  The memberships map is a convenience data structure that allows us to quickly 
determine which forest each node is part of; each node maps to the index of the graph 
within forests that it’s a part of. 
 
The second section builds a priority queue of arcs, where all arcs in the graph are inserted 
and effectively sorted so that low cost arcs are extracted before high cost ones.  Kruskal’s 
algorithm considers the graph’s arcs in that order. 
 
The third section continually extracts arcs and determines if its to and from nodes reside 
in different forests.  If not, the arc is discarded, since including it would introduce a cycle 
into the ever-growing MST, and trees are by definition forbidden from having cycles.  If the 
two nodes bridged by the arc are in different forests, we add the arc to the set of arcs we 
ultimately return as the MST, and then take care to transfer all trees in the second forest to 
the first (leaving the second forest empty).  When the while loop ends, the singleton forests 
have been merged into the smallest number of forests possible.  Each of these forests is a 
minimal spanning tree. 


