C Strings

size_t strlen(const char *str);
 returns the length of str

int strcmp(const char *s, const char *t);
 Compares s to t. Returns <0 if s < t, 0 if s == t, >0 if s > t

int strncmp(const char *s, const char *t, size_t n);
 Compares s to t up to n characters. Returns <0, 0, or >0 as strcmp does

char *strchr(const char *s, int ch);
 Returns a pointer to the first occurrence of ch in s, or NULL if not found

char *strstr(const char *haystack, const char *needle);
 Returns a pointer to the first occurrence of needle in haystack, or NULL if not found

char *strcpy(char *dst, const char *src);
 Copies src string to dst string. Strings must be properly null-terminated.
 Caller is responsible for assuring there is space for src in dst.
 Returns dst

char *strncpy(char *dst, const char *src, size_t n);
 Similar to strcpy, but only copies at most n bytes. If there is no null byte
 in the first n bytes of src, the string placed into dst will not be null-terminated.

char *strcat(char *dst, const char *src);
 Appends src to the end of dst, overwriting the original null-terminator
 in dst, and adding a null-terminator to the end of the resulting string.
 Caller is responsible for assuring there is space in dst for the appended
 string.

char *strncat(char *dst, const char *src, size_t n);
 Similar to strcat, but only uses at most n bytes from src. As with strcat(),
 the resulting string in dest is always null-terminated.
 If src contains n or more bytes, strncat() writes n+1 bytes to dest
 (n from src plus the terminating null byte). Therefore, the size of
 dest must be at least strlen(dest)+n+1.

size_t strspn(const char *s, const char *accept);
 calculates the length (in bytes) of the initial segment of s which
 consists entirely of bytes in accept.

size_t strcspn(const char *s, const char *reject);
 calculates the length of the initial segment of s which consists
 entirely of bytes not in reject.
char *strdup(const char *s);
returns a pointer to a new string which is a duplicate of the string s.
Memory for the new string is obtained with malloc, and should be freed with free.

char *strndup(const char *s, size_t n);
similar to strdup, but copies at most n bytes. If s is longer than n, only n bytes are copied, and a terminating null byte ('\0') is added.
Memory for the new string is obtained with malloc, and should be freed with free.

int atoi(const char *s);
converts the initial portion of the string pointed to by s to int

long strtol(const char *s, char **endptr, int base);
converts the initial part of the string in s to a long integer value according to the given base. If endptr is not NULL, strtol() stores the address of the first invalid character in *endptr.

Memory

void *malloc(size_t sz);
allocates size bytes and returns a pointer to the allocated memory. The memory is not initialized.

void *calloc(size_t nmemb, size_t sz);
allocates memory for an array of nmemb elements of size bytes each and returns a pointer to the allocated memory. The memory is set to zero.

void *realloc(void *ptr, size_t sz);
changes the size of the memory block pointed to by ptr to size bytes. The contents will be unchanged in the range from the start of the region up to the minimum of the old and new sizes. If the new size is larger than the old size, the added memory will not be initialized.

void free(void *ptr);
frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc(), or realloc().

void *memcpy(void *dst, const void *src, size_t n);
copies n bytes from memory area src to memory area dest. The memory areas must not overlap. Returns dst.

void *memmove(void *dst, const void *src, size_t n);
copies n bytes from memory area src to memory area dest. Returns dst.

void *memset(void *s, int c, size_t n);
fills the first n bytes of the memory area pointed to by s with the constant byte c.

Continued on next page ->
Defined Constants
#define CHAR_MIN -128
#define CHAR_MAX 127
#define UCHAR_MAX 255

#define SHRT_MIN -32768
#define SHRT_MAX 32767
#define USHRT_MAX 65535

#define INT_MIN -2147483648
#define INT_MAX 2147483647
#define UINT_MAX 4294967295

#define LONG_MIN -9223372036854775808
#define LONG_MAX 9223372036854775807
#define ULONG_MAX 18446744073709551615

Decimal / Hex / Binary values, 0-15

<table>
<thead>
<tr>
<th>decimal</th>
<th>hex</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>10</td>
<td>a</td>
<td>1010</td>
</tr>
<tr>
<td>11</td>
<td>b</td>
<td>1011</td>
</tr>
<tr>
<td>12</td>
<td>c</td>
<td>1100</td>
</tr>
<tr>
<td>13</td>
<td>d</td>
<td>1101</td>
</tr>
<tr>
<td>14</td>
<td>e</td>
<td>1110</td>
</tr>
<tr>
<td>15</td>
<td>f</td>
<td>1111</td>
</tr>
</tbody>
</table>