
CS107 Cynthia Lee
Autumn 2018

CS107 Midterm Practice Problems

Problem 1: Integer Representation
There is a small amount of scratch space between problems for you to write your work, but
it is not necessary to show your work, nor will it be evaluated. (You may also use the blank
back sides of each exam page as scratch space.) Please write your answer on the provided
lines.

a) Write the signed (two’s complement) binary number 11101100 in decimal:

b) Write the unsigned binary number 1100011011 in hexadecimal:

c) Write the hexadecimal number 0x1DEAD as an unsigned binary number:

__

d) Write the decimal number 21 as an 8-bit binary number:

e) Write the decimal number -15 as an 8-bit signed (two’s complement) binary number:

Problem 2: Memory Diagram

For this problem, you will draw a memory diagram of the state of memory (like those shown
in lecture) as it would exist at the end of the execution of this code:

int eleven = 11;
char *stranger = "things";
int **upside = malloc(3 * sizeof(int*));
upside[0] = malloc(4);
*upside[0] = 2;
upside[1] = &eleven;
upside[2] = (int*) ((char*)stranger + 1);

Instructions:

• Place each item in the appropriate segment of memory (stack, heap, read-only data).
• Please write array index labels(0, 1, 2, ..) next to each box of an array, in addition to

any applicable variable name label. (With the array index labels, it doesn’t matter if
you draw your array with increasing index going up or down--or sideways for that
matter.)

• Draw strings as arrays (series of boxes), with individual box values filled in
appropriately and array index labels as described above.

• Take care to have pointers clearly pointing to the correct part of an array.
• Leave boxes of uninitialized memory blank.
• NULL pointer is drawn as a slash through the box, and null character is drawn as

'\0’.

Stack Heap

Read-
only
Data

Problem 3: Strings and pointers (10 points)

(a) (4pts) Consider the following code, compiled using the compiler and settings we
have been using for this class.
char *str = "Stanford University";
char a = str[1];
char b = *(char*)((int*)str + 3);
char c = str[sizeof(void*)];
What are the char values of variables a, b, and c? (a is filled in for you as an example)
Write “ERROR” across the box if the line of code declaring the variable won’t
compile.

a b c

(b) (6pts) The code below has three buggy lines of code in it. The three buggy parts of
the code are noted in bold. Next to each buggy line, write a new line of code that
fixes the bug. You may have an idea for restructuring the program that would also fix
the bugs, but you must only write code to replace the lines shown in bold—one line
of replacement code per one line of buggy code.
The purpose of this function is to take an array of strings (always size 3) and returns
a heap-allocated array of size 2, where the first entry is the concatenation of the first
two strings in the input array, and the second entry is a copy of the third string in the
input array. The two strings in the returned array are both newly allocated on the
heap. The input is not modified in any way. You may assume that the input is always
valid: the array size is always 3, none of the array entries is NULL, and all strings are
valid strings.

char **pair_strings(char **three_strings) {

char *return_array[2];

__;
size_t str0len = strlen(three_strings[0]);
return_array[0] = malloc(str0len + strlen(three_strings[1]));

__;
strcpy(return_array[0], three_strings[0]);
for (size_t i = 0; i < strlen(three_strings[1]); i++) {

for (___) {
 return_array[0][str0len + i] = three_strings[1][i];

}

 't'

return_array[1] = strdup(three_strings[2]);
return return_array;

}
Problem 4: Bitwise ops

(6pts) As you know, an unsigned int on our system is 32 bits or 4 bytes. We can imagine
separating the number into bytes and stacking the bytes vertically, like this (for 0xFEFAFE05):

11111110
11111010
11111110
00000101

We say a “column” in this view is “odd” if it contains an odd number of 1’s. Write a function
odd_cols that takes an unsigned int and returns true if every column of the input number
is odd, otherwise false (i.e., returns false if any column with zero, two, or four 1’s in it).

• Example 1: odd_cols should return true for the input shown above because the
rightmost column has three 0’s and one 1, and all other columns have three 1’s).

• Example 2: return false for this input: 0x00000001
• Example 3: return true for this input: 0x000000FF
• For full credit, your code should separate the bytes and then use a small number of

bitwise operations that in effect check all 8 columns simultaneously. In particular,
your code should not use any loops (evading this restriction with recursion or
excessive repetition is not allowed). Correct solutions that do not follow this
guideline are worth 4pts (2pt deduction).

• Some code structure is provided to help you get started.
o The ptr variable is intended to help you separate out the rows, but you aren’t

required to use it.
o The solution to this problem does not depend on the byte order, so you

shouldn’t be concerned with little-endian issues, and you may assign the
provided rowN variables in any order.

o You are required to fill in the rowN variable lines so that the variables
collectively hold all four bytes, but after that it’s up to you to design your
code.

(Write your code on the next page.)

bool odd_cols(unsigned int n) {
 unsigned char *ptr = (unsigned char*)&n;
 unsigned char row0, row1, row2, row3;

 row0 = ___;

 row1 = ___;

 row2 = ___;

 row3 = ___;

 // Write the rest of the function here:

}

Problem 5: Strings and Pointers Short Answer

(a) (3pts) Write the decimal address the pointer arithmetic expression would produce (or
say that the pointer arithmetic expression is illegal). You should assume that base is of
type void* and evaluates to decimal 1000. Also assume that this code is compiled and
run with our usual class compiler and settings. What address is produced by:

(char**) base + 10 _____________

(char*) base + 10 _____________

(int*) base + 10 _____________

(b) (4pts) Here is some buggy code that takes an array of strings (array of char*) and returns
the concatenation of them all together in sequence.

char *multi_concatenate(const char *strs[], size_t num_strs) {
 size_t len = 1;
 for (size_t i = 0; i< num_strs; i++) {
 len += sizeof(strs[i]);

}

char *result = malloc(len);
for (size_t i = 0; i< num_strs; i++) {
 memcpy(result + sizeof(strs[i]) * i, strs[i],

sizeof(strs[i]));
}
result[sizeof(strs[0]) * num_strs] = '\0';

return result;

}

Assume the buggy code above is compiled according to our usual class compiler and
settings. We call it with the printf line below (you may assume that, when run, it
manages to not crash at least long enough to complete the printf line). Write what is
printed by the buggy code above.

char *strs[] = {"HELLOWORLD", "IAMREADY", "TOPARTY", "RIGHTNOW!"};
printf("%s\n", multi_concatenate(strs, 4));

Output: ___

(c) (3pts) Below is the same buggy code from above. Fix it so that it correctly takes an array
of strings (array of char*) and returns the concatenation of them all together in sequence.
You may cross out code, add code, or edit code, as needed (just please be as neat and
clear as possible, thank you! J).

char *multi_concatenate(const char *strs[], size_t num_strs) {

 size_t len = 1;

 for (size_t i = 0; i< num_strs; i++) {

 len += sizeof(strs[i]);

}

char *result = malloc(len);

for (size_t i = 0; i< num_strs; i++) {

 memcpy(result + sizeof(strs[i]) * i, strs[i],

sizeof(strs[i]));

}

result[sizeof(strs[0]) * num_strs] = '\0';

return result;

}

Problem 6: The accumulate generic

Consider the following two functions, noticing that they have very similar structure:

int int_array_product(const int array[], size_t n) {
 int result = 1;
 for (size_t i = 0; i < n; i++) {
 result = result * array[i];
 }
 return result;
}

double double_array_sum(const double array[], size_t n) {
 double result = 0.0;
 for (size_t i = 0; i < n; i++) {
 result = result + array[i];
 }
 return result;
}

You are to implement a generic accumulate function that captures the shared structure
of these two funcions. It takes the base address of an array and its effective length, the
array element size, the function callback that should be repeatedly applied (above it
would be multiply and add, but implemented as 2-argument functions rather than
operators directly), the address of the default/starting value (to play the role of 1 and 0.0 in
the above code), and the address where the overall result should be placed. The function
type of the callback is as follows:

typedef void (*BinaryFunc)(void *partial, const void *next, void *result);
Any function that can interpret the data at the first two addresses, combine them, and
place the result at the address identified via the third address falls into the BinaryFunc
function class. (The const appears with the second address, because it’s expected that
the array elements—the elements that can’t be modified—be passed by address through
the next parameter.)

a) First, implement the generic accumulate routine. We’ve provided some of the

structure that should contribute to your implementation. You should fill in the three
arguments needed so that memcpy can set the space addressed by result to be identical
to the space addressed by init, and then go on to fill in the body of the for loop.

This first part was designed to expose basic memory and pointer errors very early on—
e.g. to confirm that weren’t dropping &’s and *’s where they weren’t needed.

void accumulate(const void *base, size_t n, size_t elem_size,
 BinaryFunc fn, const void *init, void *result) {

b) Now reimplement the int_array_product function from the previous page to
leverage the accumulate function you just implemented for part a). Assume the
name of the callback function passed to accumulate (which you must implement) is
called multiply_two_numbers.

static void multiply_two_numbers(void *partial, const void *next, void
*result) {

int int_array_product(const int array[], size_t n) {

Problem 7: Integer Representation

a) Write the unsigned binary number 101100111010 in hexadecimal:

b) Write the signed (two’s complement) binary number 101101 in decimal:

c) Write the signed (two’s complement) binary number 001101 in decimal:

d) Write the hexadecimal number 0x54BEEF as an unsigned binary number:

e) Write the decimal number 28 as an 8-bit binary number:

f) Write the decimal number 28 in hexadecimal:

g) Write the decimal number -33 as an 8-bit signed (two’s complement) binary number:

Problem 8: Integer Representation
There is a small amount of scratch space between problems for you to write your work, but
it is not necessary to show your work, nor will it be evaluated. (You may also use the blank
back sides of each exam page as scratch space.) Please write your answer on the provided
lines.

a) (2pts) Write the unsigned binary number 1100101011111110 in hexadecimal:

b) (2pts) Write the decimal number 55 as an 8-bit signed (two’s complement) number:

c) (2pts) Write the 8-bit signed (two’s complement) hexadecimal number 0xAA in

decimal:

d) (2pts) Write the decimal number -13 in 8-bit signed (two’s complement):

Problem 9: Strings and pointers

(c) (6pts) Consider the following code, compiled using the compiler and settings we
have been using for this class.

char *str = strdup("ABCDEFGHIJKLMNOPQRSTUVWXYZ");
char a = str[0];
char c = *(char *)((int *)str + 2);
str++;
char d = str[3];

Note: recall that type short is like int but 2 bytes.

What are the char values of variables a, b, c, and d? (a is filled in for you as an
example) Write “ERROR” across the box if the line of code declaring the variable
won’t compile, or executing the operation could give a memory error in Valgrind
(e.g., off end of array).

a c

d

 'A'

A generic CMap type maps string keys to arbitrary values. It works with the following
functions:

 // returns the first key in the map as a char *,

// or NULL if there are no keys
 char *cmap_first(CMap *cmap);

 // returns a pointer to the value associated with that key, or NULL
 // if the key does not exist.
 void *cmap_get(cmap, char *key);

// returns the next char * key in the map following this key,
// or NULL if there are no more keys.
char *cmap_next(cmap, char *key);

// returns the number of elements (key/value pairs) in the map.
int cmap_count(cmap);

(d) (6pts) The code below has three buggy lines of code in it. The buggy parts of the

code are noted in bold. The purpose of this function is to take a pointer to a CMap
that maps each key (a string, as usual for CMap) to a value of type int. The function
is supposed to put the map’s values in an array of integers (order of the values does
not matter), and also make a copy of the first key (the key that comes back from
cmap_first). The copy of the first key and the array are to be “returned” to the caller
by setting two parameters that are pointers passed “by reference.”

• The copy of the first key should be a new heap copy.
• The array of integer values should be created on the heap.
• The input parameters first_key and values are pointers passed “by

reference” that should be set to point to a new heap copy of the first key, and
an array holding the map’s values, respectively.

• Be VERY careful about order of operations with * and []—you are encouraged
to overuse parentheses to make your meaning clear and avoid mistakes with
this.

• Note that there may be more than one distinct bug per buggy line.
Below each buggy line, write a new line of code that fixes the bug. You may have a
different idea for restructuring the program that would also fix the bugs, but you must
only write code to replace the lines shown in bold—one line of replacement code
per one line of buggy code.

 void separate_map(CMap *cmap, char **first_key, int **values) {
 first_key = cmap_first(cmap);

__;

 int nelems = cmap_count(cmap);
values = malloc(nelems);

__;

 int index = 0;
 for (const char *cur = cmap_first(cmap); cur != NULL;
 cur = cmap_next(cmap, cur)) {
 values[index] = cur;

 ___;

 }
 }

Problem 10: Memory Diagram

For this problem, you will draw a memory diagram of the state of memory (like those shown
in lecture) as it would exist at the end of the execution of this code:
 char *tree = "STANFORD";
 char beat[8];
 char **fountain = malloc(8);
 int *leland[2];
 strcpy(beat, "Cal");
 fountain[0] = strdup("hop");
 leland[0] = malloc(4);
 *(leland[0]) = 5;
 leland[1] = leland[0];

Instructions:

• Place each item in the appropriate segment of memory (stack, heap, read-only data).
• Please write array index labels (0, 1, 2, …) next to each box of an array, in addition

to any applicable variable name label. (With the array index labels, it doesn’t matter
if you draw your array with increasing index going up or down--or sideways for that
matter.)

• Draw strings as arrays (series of boxes), with individual box values filled in
appropriately and array index labels as described above.

• Take care to have pointers clearly pointing to the correct part of an array.
• Leave boxes of uninitialized memory blank.
• NULL pointer is drawn as a slash through the box, and null character is drawn as

'\0'.

Stack Heap

Read-
only
Data

