
Note: this exam is double sided, make sure to check all pages!

CS107 Practice Midterm Exam

This is a closed book, closed note, closed electronic device exam, except for one double-
sided US-Letter-sized (8.5"x11") page of your own prepared notes which you may refer to
during the exam. You have 120 minutes to complete all problems. You don’t need to
#include any header files. For coding questions, the majority of the points are typically
focused on the correctness of the code. However, there may be deductions for code that is
roundabout/awkward/inefficient when more appropriate alternatives exist. For any coding
questions, your answers should compile cleanly and not have any memory leaks or errors.
Solutions that violate any specified restrictions may get partial credit. Style is secondary to
correctness (e.g., there are no style deductions for using magic numbers). There is 1 point
per minute of the exam.

Good luck!

SUNet ID (username): __________________@stanford.edu

First Name: __________________________________

Last Name: __________________________________

I accept the letter and spirit of the honor code.

 [signed] __

 Problems:

1. Bits, Bytes and Numbers 16 points

2. C Strings 30 points

3. Pointers and Generics 54 points

4. Using qsort 10 points

5. void * and Function Pointers 10 points

 120 points total

 2

Problem 1: Bits, Bytes and Numbers [16 points]

For this question, refer to the following mystery function:

unsigned char mystery(unsigned char n) {

n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n++;
return (n >> 1);

}

A) [6 points] What does the following code print?

printf("%u\n", mystery(17)); // %u prints the integer value
printf("%u\n", mystery(88)); // for an unsigned char
printf("%u\n", mystery(150));

B) [5 points] For which values of n does mystery(n) return non-zero?

 3

C) [5 points] When mystery(n) returns a non-zero value, what is the general bit pattern of the
result? In other words, explain the return value in terms of the argument n.

 4

Problem 2: C Strings [30 points]

The function

char *substr(const char *s, char start, char stop, char result[])

fills result with the substring that starts at the first instance of the start character and ends at
the next instance of the stop character. The result buffer is guaranteed to be big enough to
hold the substring, and the function should properly null-terminate result. If there isn’t a
substring that meets the criteria, result should contain the empty string. The result buffer is
also returned to the calling function.

Here are some examples:

char *input = "Mississippi";
char buffer[strlen(input) + 1];

substr(input, 'i', 'p', buffer); // fills buffer with "ississip"
substr(input, 's', 'i', buffer); // fills buffer with "ssi"
substr(input, 's', 's', buffer); // fills buffer with "ss"
substr(input, 'p', 's', buffer); // fills buffer with empty string

Requirements:

• Your function should not allocate, deallocate, or resize any memory.

• Re-implementing functionality that is available in the standard library will result in loss of
credit. For example, your code cannot have any explicit loops! Instead, call the library
functions!

A) [25 points] Implement the substr function on the next page.

 5

char *substr(const char *s, char start, char stop, char result[]) {

 6

B) [5 points] Your colleague decides that it would make more sense to have a correctly-sized
result buffer so you don't waste space. They suggest adding the following code before
returning from the function (after result has been populated correctly):

// note: caller is responsible for freeing returned pointer
char *new_buffer = malloc(strlen(result));
strcpy(new_buffer, result);
free(result);
return new_buffer;

While you are happy that your colleague has left a nice comment about the caller being
responsible for freeing the memory, you see two problems in the code. One problem is
definitely an error, and the other problem has a big potential to be an error. Identify these two
problems.

 7

This page intentionally left blank.

 8

Problem 3: Pointers and Generics [54 points]

Even though C doesn’t have classes or data structures, with generics and structs we can
approximate this functionality, with functions we write that use this struct. For this problem, you
will be implementing code for part of a generic C queue, which has first-in-first-out behavior.
The queue elements will be stored as a linked list of nodes:

typedef struct node {
 struct node *next;
 void *data;
} node;

The queue definition is as follows. Note that there is both a front and a back in a queue, and
elements are enqueued onto the back of the queue, and dequeued from the front:

typedef struct queue {
 int width;
 node *front;
 node *back;
} queue;

The queue_create function initializes a queue:

queue *queue_create(int width) {
 // note: caller responsible for freeing queue
 queue *q = malloc(sizeof(*q));
 q->width = width;
 q->front = NULL;
 q->back = NULL;
 return q;
}

The queue_enqueue function works by copying the data into a node, and it does not simply
copy the pointer location. The function looks like this:

// addr is where q->width bytes of data are to be copied from and
// stored into a queue node
void queue_enqueue(queue *q, const void *addr) {
 node *new_node = malloc(sizeof(*new_node));
 new_node->data = malloc(q->width);
 memcpy(new_node->data, addr, q->width);
 new_node->next = NULL;
 if (q->front == NULL) {
 q->front = new_node;
 } else {
 q->back->next = new_node;
 }
 q->back = new_node;
}

 9

A) [35 points] Write the queue_dequeue function. It should take in a pointer to a queue and
a void *addr, which is a pointer to an address that can hold queue->width bytes from a
queue node. The data in the node at the front of the queue should be copied to the address
pointed to by addr, and the node at the front of the queue should be removed and deallocated.
The function should return true if the queue has any elements when called, or false if the queue
is empty when called.

bool queue_dequeue(queue *q, void *addr) {

B) [19 points] In assign3, you wrote a mytail program with a circular queue of a fixed size.
Another way to write the program would have been with the generic queue you just created. Fill
in each of 8 blanks in the main function on the next page. Your program should not leak any
memory. (For this program, assume that all input lines end with a newline \n character).

 10

int main(int argc, char *argv[]) {

 char buffer[1024];

 int nlines = atoi(argv[1]);

 FILE *fp = fopen(argv[2], "r");

 queue *q = queue_create(_____________________________); // line 1

 int lines_read = 0;

 char *line;

 while (fgets(buffer, sizeof(buffer), fp)) {

 buffer[strlen(buffer) - 1] = '\0';

 // Make a persistent copy of the line and
 // enqueue into the queue.
 line = __; // line 2

 queue_enqueue(q, _______________________________); // line 3

 if (++lines_read > nlines) {

 queue_dequeue(q, ___________________________); // line 4

 ___; // line 5

 }

 }

 fclose(fp);

 while (queue_dequeue(q, ___________________________)) { // line 6

 printf("%s\n" ,line);

 ___; // line 7

 }

 ___; // line 8

 return 0;

}

Problem 4: Using qsort [10 points]

Assume the following definition of a date:

typedef struct date {
 int month;
 int year;
} date;

Dates are compared first by year, and if year is the same, then compared by month. For
example, {5,2018} (May 2018) is less than {6,2018} (June 2018), and {11,2000} (Nov
2000) is less than {4,2018} (April 2018). Implement the cmp_date comparison callback that
can be used with qsort to sort an array of dates, as in the code below.

int main(int argc, char *argv[]) {
 struct date dates[] = {{1,2000}, {6,2018}, {2,2018}, {1,2005},
 {8,2007}};
 int n = sizeof(dates) / sizeof(dates[0]);

 qsort(dates, n, sizeof(*dates), cmp_date);
 for (int i = 0; i < n; i++) {
 printf("%d/%d\n", dates[i].month, dates[i].year);
 }
 return 0;
}

int cmp_date(const void *a, const void *b) {

 12

Problem 5: void * and Function Pointers [10 points]

The map function applies a client-supplied callback function to each element in a generic array.
The sample code demonstrates using map to apply a callback function that adds one to each
array element.

void increment(void *a) {
 int *pnum = (int *)a;
 (*pnum)++;
}

int main(int argc, char *argv[]) {
 int arr[] = {5, 8, 2, 0};
 int n = sizeof(arr) / sizeof(arr[0]);

 map(arr, n, sizeof(*arr), increment);
 // now arr holds {6, 9, 3, 1};
 ...
}

Implement the generic map function.

void map(void *arr, int n, size_t width, void (*fn)(void *)) {

