
CS107	 	 	 	 	 	 	 	 	 	 	 				 			Cynthia	Lee	
Autumn	2018	 	 	 	 	 	 	 	 	 									 					November	2,	2018	

CS107	Midterm	Examination	SOLUTIONS	
	

Problem	1:	Integer	Representation	

(a) 0110	1101	
(b) -54	
(c) 1110	0001	
(d) (any)	

Problem	2:	Pointers	and	Arrays	

(a) Leave	blank	or	assert(nelems > 0).	Although	sort	of	harmless,	assert(nelems >= 0)	
is	not	helpful	because	its	size	is	unsigned	anyway.	Code	should	not	be	mallocing	temp	
space.	

(b) nelems * sizeof(int)	
(c) copy[i] = *(arr[i]);	

free(arr[i]);
arr[i] = copy + i;	

(d) Leave	blank.		

Problem	3:	Memory	Diagram	

	

	 Stack Heap

Read-only
Data

LAST (FAMILY) NAME: ________________________________ SUNET: _________________________________

Text	description	of	the	diagram	above:		
	
aaron	is	a	char	*	on	the	stack,	which	points	to	the	index	1	element	(the	‘u’)	of	an	array	of	10	characters	in	
the	read-only	data	segment	(a	string	literal)	containing	the	characters	“burr,	sir”	and	a	null	terminator.		In	
this	data	segment	array,	the	character	‘b’	is	at	index	0,	‘u’	at	index	1,	‘r’	at	index	2,	‘r’	at	index	3,	‘,’	at	index	
4,	‘	‘	at	index	5,	’s’	at	index	6,	‘i’	at	index	7,	‘r’	at	index	8,	and	‘\0’	at	index	9.		
	
the_other	is	an	int	*	on	the	stack,	which	points	to	the	index	0	element	of	an	array	of	3	ints	on	the	heap.		
The	index	0	element	of	this	array	is	51,	and	the	index	1	element	is	85.		The	index	2	element	is	not	
initialized.	
	
eliza	is	an	array	of	2	char	*s	on	the	stack.		The	index	0	element	of	this	array	points	to	to	the	index	0	element	
(the	’s’)	of	an	array	of	10	characters	on	the	heap	storing	a	string	“satisfied”	and	a	null	terminator.		In	this	
heap-allocated	string,	the	character	’s’	is	at	index	0,	‘a’	at	index	1,	’t’	at	index	2,	‘i’	at	index	3,	’s’	at	index	4,	‘f’	
at	index	5,	‘i’	at	index	6,	‘e’	at	index	7,	‘d’	at	index	8,	and	‘\0’	at	index	9.		The	index	1	element	of	eliza	points	
to	the	index	3	character	(the	second	‘r’	in	“burr")	in	the	string	literal	in	the	data	segment	also	pointed	to	by	
aaron.	
	
Problem	4:	Generics	and	Function	Pointers	

(a) 	
void remove_less (void *arr, size_t *nelems, size_t width,

int (*cmp)(const void *p, const void *q))
{
 // this guards against nelems = 0
 for (size_t i = (*nelems) ? (*nelems - 1) : 0; i > 0; i--) {
 void *ith = (char*)arr + i * width;
 int res = cmp(ith, arr);
 if (res < 0) {
 memmove(ith, (char*)ith + width, (*nelems - 1 - i) * width);
 *nelems = *nelems - 1; // *nelems--; doesn’t work due to op precedence
 }
 }
}

(b) 	
int farm_compare(const void *p, const void *q)
{
 const struct farm *farm_p = (const struct farm *)p;
 const struct farm *farm_q = (const struct farm *)q;
 return farm_p->count + strlen(farm_p->species) -
 (farm_q->count + strlen(farm_q->species));
}	
	
	
	
	
	
	

LAST (FAMILY) NAME: ________________________________ SUNET: _________________________________

	
	
	
Problem	5:	Bitwise	Operations
(a)
bool zeros_detector_loop(unsigned int n)
{
 unsigned int mask = 0x3; // 0b000....00011
 for (int i = 0; i < 31; i++) {
 if (!(n & mask)) return true;
 mask <<= 1;
 }
 return false;
}
(b)
// one elegant solution
bool zeros_detector(unsigned int n)
{
 return (~n) & (~n << 1);
}
// a alternate mask-based solution
bool zeros_detector(unsigned int n)
{
 return ((n | (n >> 1)) & 0x7FFFFFFF) != 0x7FFFFFFF;
}

