
CS107	 	 	 	 	 	 	 	 	 	 	 				 			Cynthia	Lee	
Autumn	2018	 	 	 	 	 	 	 	 	 									 					November	2,	2018	

CS107	Midterm	Examination	
	

You	have	1	hour	50	minutes	to	complete	all	problems.	

This	is	a	closed	book,	closed	computer	exam.	You	are	allowed	only	1	page	(8.5x11,	both	sides)	of	
notes,	and	no	other	aids.	You	don’t	need	to	#include	any	libraries,	and	you	needn’t	use	assert	to	
guard	against	any	errors.		Understand	that	the	majority	of	points	are	awarded	for	concepts	taught	
in	CS107,	and	not	prior	classes.		You	don’t	get	many	points	for	for-loop	syntax,	but	you	certainly	
get	points	for	proper	use	of	&,	*,	and	the	low-level	C	functions	introduced	in	the	course.	The	last	
page	of	the	exam	is	a	reference	sheet.	DO	NOT	ADD	OR	REMOVE	PAGES	OF	THE	EXAM	(exception:	
you	 may	 remove	 the	 reference	 sheet).	 If	 you	 need	 extra	 space	 for	 scratch	 and/or	 problem	
responses,	use	the	blank	back	sides	of	each	page.	Changing	the	pages	confuses	the	online	grading	
system	and	will	cause	you	to	lose	points.	

I	appreciate	your	extraordinary	effort	this	quarter	and	trust	it	will	pay	off	here.	You’ve	got	this!	

	

IMPORTANT:	WRITE	YOUR	NAME	AND	SUNET	(that	is	your	myth	login)	ON	EVERY	PAGE	

Please	do	this	at	the	beginning	of	the	exam	time	to	ensure	you	won’t	be	scrambling	at	the	end.	
Late	exam	submissions	(“I	just	need	to	write	my	name	on	each	page!”)	will	NOT	be	accepted.	

Thanks	for	your	cooperation.	

	

NAME:	___	SUNET:	__	

	

I	accept	the	letter	and	spirit	of	the	honor	code.		I	will	neither	give	nor	receive	unauthorized	aid	on	
this	exam.			

	

	 [signed]		

	

Problem	1:	Integer	Representation,	7pts	
Problem	2:	Pointers	and	Arrays,	8pts	
Problem	3:	Memory	Diagram,	13pts	
Problem	4:	Generics,	13pts	
Problem	5:	Bitwise	Operations,	8pts	
Write	your	name	and	SUNet	on	each	page,	1pt	
TOTAL:	50	points	 	

LAST (FAMILY) NAME: ________________________________ SUNET: _________________________________

Problem	1:	Integer	Representation	(7pts)	
There	is	a	small	amount	of	scratch	space	between	problems	for	you	to	write	your	work,	but	it	is	not	
necessary	to	show	your	work,	nor	will	it	be	evaluated.	(You	may	also	use	the	blank	back	sides	of	
each	exam	page	as	scratch	space.)	Please	write	your	answer	in	the	provided	box	only.	
	

(a) (2pts)	Consider	the	code	char c = 'm';	Write	the	binary	representation	of	the	value	of	
c,	with	exactly	the	right	number	of	bits	for	the	type	(i.e.,	 including	leading	zeros,	if	any).	
There	is	an	ASCII	table	at	the	end	of	the	exam.	

	
	

	
	

(b) (2pts)	Our	state’s	postal	abbreviation	is	CA.	If	we	interpret		0xCA	as	a	signed	8-bit	value	(i.e,	
type	char),	what	is	the	value	in	decimal?	

	
	
	

	
	

(c) (2pts)	Write	the	decimal	number	-31	in	8-bit	signed	(two’s	complement):			

	
	
	
	
	
	
Halloween-related	fun	fact:	
Each	year,	the	dates	of	Christmas	and	Halloween	are	Dec-25	and	Oct-31,	respectively.	The	way	to	
write	Decimal	25	in	Octal	(base	8)	is…wait	for	it...31!	You’re	welcome.	
	

(d) (1pt)	What	is	your	favorite	hexadecimal	number?			
	 	

LAST (FAMILY) NAME: ________________________________ SUNET: _________________________________

Problem	2:	Pointers	and	Arrays	(8pts)	
Write	a	function	clean_up_ptrarr.	It	takes	an	array	of	pointers,	each	pointer	points	to	one	heap-
allocated	 integer.	 Each	 integer’s	memory	was	 acquired	by	 a	 separate	malloc	 call	 (no	 two	 the	
same),	so	they	could	be	spread	all	over	the	heap,	not	in	one	contiguous	block	of	memory	like	an	
array.	Your	function	should	“clean	up”	this	situation,	by	copying	them	all	into	one	contiguous	array,	
updating	 the	 input	 array’s	 pointers	 so	
they	point	to	the	same	integer	value	but	in	
its	 newly	 cleaned-up	 contiguous	 array	
(see	“before	&	after”	diagram,	below).		

Specifically,	your	function	should:	
(1) create	a	new	heap-allocated	array	

that	holds	type	int;	
(2) copy	the	integer	values	pointed-to	

by	 the	pointers	 in	 the	 input	array	
to	 the	 newly-allocated	 int	 array,	
preserving	the	same	order;	

(3) then	set	the	input	array’s	pointers	to	point	to	the	values	in	their	new	locations.	

Notes:	 Since	 we	 aren’t	 using	 the	 int	 values	 that	 were	 pointed-to	 by	 the	 original	 input	 array	
anymore,	you	should	make	sure	that	free	the	memory	associated	with	them	at	the	appropriate	
time.	Only	write	in	the	boxes.	You	may	not	need	every	box.	

void clean_up_ptrarr (int *arr[], size_t nelems) {

 int *copy = malloc();
 for (int i = 0; i < nelems; i++) {

 }

}	 	

Before: After:

LAST (FAMILY) NAME: ________________________________ SUNET: _________________________________

Problem	3:	Memory	Diagram	(13pts)	
For	this	problem,	you	will	draw	a	memory	diagram	of	the	state	of	memory	(like	those	shown	in	
lecture)	as	it	would	exist	at	the	end	of	the	execution	of	this	code:		

char *aaron = "burr, sir";
int *the_other = malloc(12);
the_other[0] = 51;
char *eliza[2];
*eliza = strdup("satisfied");
*(int *)((char *)the_other + 4) = 85;
aaron++;
eliza[1] = aaron + 2;

Instructions:	
• Place	each	item	in	the	appropriate	segment	of	memory	(stack,	heap,	read-only	data).	
• Please	write	array	index	labels	(0,	1,	2,	...)	next	to	each	box	of	an	array,	in	addition	to	any	

applicable	variable	name	label.	(With	the	array	index	labels,	it	doesn’t	matter	if	you	draw	
your	array	with	increasing	index	going	up	or	down--or	sideways	for	that	matter.)	

• Draw	strings	as	arrays	(series	of	boxes),	with	individual	box	values	filled	in	appropriately	
and	array	index	labels	as	described	above.	

• Take	care	to	have	pointers	clearly	pointing	to	the	correct	part	of	an	array.	
• Leave	boxes	of	uninitialized	memory	blank.	
• NULL	pointer	is	drawn	as	a	slash	through	the	box,	and	null	character	is	drawn	as	'\0'.	

	

	 Stack Heap

Read-only
Data

LAST (FAMILY) NAME: ________________________________ SUNET: _________________________________

Problem	4:	Generics	and	Function	Pointers	(13pts)	
For	this	problem,	you	will	write	a	generic	function	that	takes	an	array	and	selectively	removes	
items	from	it	according	to	a	client-specified	criteria.	The	behavior	of	this	function	is	as	follows:	

• Signature:	 void remove_less(void *arr, size_t *nelems, size_t width,
cmp_fun_t cmp).	cmp_fun_t	is	defined	the	same	way	as	on	assign4	and	in	part	(b)	below.		

• remove_less	removes	all	elements	that	are	less	than	the	first	element	in	the	array.	If	the	
array	has	size	0	or	1,	then	there	are	no	elements	to	remove,	so	do	nothing.	

• The	parameter	nelems	is	passed	by	reference	and	should	be	updated	if	necessary	to	reflect	
the	new	size	after	any	removals	done	by	remove_less.	

• When	the	function	is	done,	the	array	will	still	have	the	same	capacity	(do	not	call	realloc).	
The	order	of	elements	that	remain	should	be	preserved.	

• Just	 like	 on	 assign4,	 for	 full	 credit	 your	 solution	 should	 use	 appropriate	 C	 library	
functions	 rather	 than	 re-implement	 that	 functionality	 (for	 example,	 with	 unnecessary	
loops).	Remember	that	a	C	library	reference	is	at	the	end	of	the	exam.	

• Example:	If	given	input	array	{5, 1, 2, 7, 5, 3, 8, 0}	and	the	usual	int	comparison	
function	(see	part	(b)	for	a	reference	solution),	then,	at	return	time,	the	array	should	be	{5,
7, 5, 8}	and	the	number	of	elements	should	be	updated	to	4.		
	

(a) (10pts)	Write	the	remove_less	function.	We	have	written	some	of	it	for	you,	and	you	must	
follow	the	structure	we	started,	even	if	you	might	think	of	other	ways	of	doing	it.		

void remove_less (void *arr, size_t *nelems, size_t width, cmp_fun_t cmp) {

 for (size_t i = ; i > 0; i--) { // note i--
 // First calculate the address of the ith array element

 void *ith = ;

// Compare the ith and 0th items

int res = cmp();

// If ith < 0th, remove ith by moving elements over. Do not move more
// elements than necessary. Complete the function here.
if (res < 0) {

	 	

LAST (FAMILY) NAME: ________________________________ SUNET: _________________________________

(b) 	(3pts)	On	assign4,	you	had	practice	writing	your	own	cmp_fun_t	comparison	functions,	
which	are	defined	as	follows:	

typedef int (*cmp_fn_t)(const void *p, const void *q);	

As	a	reminder	of	how	they	work,	here	is	a	reference	implementation	of	a	comparison	function	for	
elements	of	type	int:	

int int_compare(const void *p, const void *q) {

 return *(const int *)p - *(const int *)q;

}

Now	consider	the	following	definition	of	a	struct	used	for	tracking	
populations	of	various	types	of	pets	on	my	fantasy	farm:		
	
struct farm { size_t count; char *species; };		
	
To	the	right	is	a	memory	diagram	of	an	array	of	these	structs	(array	
size	4).	Write	a	comparison	function	for	this	struct	that	takes	the	sum	
of	 the	count	 and	 the	 length	of	 the	 string	species,	 and	compares	
those	values.		

o Example:	comparing	the	top	two	elements	in	the	diagram	at	right	would	compute	(5+8)	
and	(18+5),	determining	that	13	<	23.	

int farm_compare(const void *p, const void *q) {

}

LAST (FAMILY) NAME: ________________________________ SUNET: _________________________________

Problem	5:	Bitwise	Operations	(8pts)
Write	a	function	that	takes	an	unsigned int	and	returns	true	if	its	binary	representation	contains	
at	least	one	instance	of	at	least	two	consecutive	zeros.	Examples:		

o Input:			00110111101111101111111111011111 Return:		true	
o Input:			11111101111011111110000111111111 Return:		true	
o Input:			01010101010101010101010101010101 Return:		false	
o Input:			11111111111111111111111111111111 Return:		false	

	
(a) (6	pts)	Write	a	function	that	uses	a	loop	to	each	pair	of	bits	to	detect	a	pair	of	zeros.	

bool zeros_detector(unsigned int n)	{	

}

(b) (2pts)	 Now	 write	 the	 same	 zeros_detector	 function	 but	without	 using	 any	 loops	 or	
recursion	(and	no	excessive	writing	the	same	lines	of	code	to	evade	this).	The	small	point	
value	understates	the	difficulty	of	this	question,	so	allocate	your	time	wisely	(the	intention	
is	to	minimally	penalize	students	who	solve	part	(a)	but	not	part	(b)).		

bool zeros_detector(unsigned int n) {

}

LAST (FAMILY) NAME: ________________________________ SUNET: _________________________________

ASCII	Table	Reference	

	

