
Monday, January 22, 2024

Computer Systems

Winter 2024

Stanford University

Computer Science Department

Reading: Reader: Ch 4, C Primer, Ch 7, C Strings,
K&R (1.9, 5.5, Appendix B3), or Essential C section
3 for C-strings and string.h library functions.

Lecturer: Chris Gregg

CS 107
Lecture 6: Chars and

C-Strings (take 2)

s t r i n g \0

1

Today's Topics

• Logistics
• Assign1 — Due Wednesday at 11:59pm

• Reading: Reader: C Primer, C Strings, K&R 1.9, 5,5, Appendix B3
• Chars

• ctype library
• C-Strings

• How strings are laid out in memory
• The string.h library

2

First Feedback!

3

We received our first "High Frequency Feedback" and I wanted to take a couple of
minutes to discuss some of the comments.

From "Is anything from class still confusing to you?"

"yes unix is confusing and the lack of a tutorial on how to use emacs/vim is
kind of rude"

Yes, Unix commands do take a while to learn! You'll get there! We do have tutorials
for both emacs and vim, by the way (see the Handouts tab on the website).

"assignments are very tedious"

Well — yes, assignments are challenging. I don't know that I would use the word
"tedious", but this is a hard class, with long, hard assignments.

https://web.stanford.edu/class/cs107/resources/emacs.html
https://web.stanford.edu/class/cs107/resources/vim.html

First Feedback!

4

"I would love to see more in-class examples."

This is a tough one — I have to make a call to teach you content and show you
examples. I do my best to accomplish both, but we are certainly time-limited in
lecture. One place to see lots of examples is in lab, which is where you can learn a
lot by digging in and working with code.

"Sometimes I feel like Chris jumps to quickly into things that we might not
have prior experience with (I would've appreciated a slower introduction to
the GDB debugger, Unix, and some of the basics of C)."

Yes, I wish we had time to take it a bit slower. Alas. Again, lab is (and A0 was) your
friend here.

First Feedback!

5

"Lectures move very quickly and we don't always finish the slides, so I'm
not always sure what information I am accountable for on hw or before the
next lecture."

Yes, sometimes I don't get to all the slides. I will always get to the rest of those slides
in some form — most often, in the next lecture, but very infrequently I'll post a
follow-up video. I don't want this class to creep into the "you need to watch 3 hours
of lecture per class period!" so I want to be careful with extra videos.

"I am still confused on some of the bit masking material."

Lab and assignment 1 (where you learn a lot just doing it) are going to be very
helpful here. And come to office hours!

gdb!

6

Learning gdb as soon as you can is going to pay off immensely this quarter!

This will help your debugging, and will help in office hours when your CA says, "what
does the debugger say? Where is your bug?"

Today, we will see lots of debugging in gdb, as well.

ChatGPT

7

• As I mentioned in Lecture 1, we are checking for the use of ChatGPT and the like.
• I have found some instances for Assignment 1 where students are clearly using

ChatGPT to do their work.
• These students will be receiving an email from the Office of Community

Standards in the next few weeks or so.
• When those cases are complete, and if the students are found responsible, the

students in question will fail the class.
• If you have anything to tell me in regard to your use of ChatGPT or otherwise,

please email me at cgregg@stanford.edu
• I take this very seriously, because I want the honest students to feel secure that

they are doing the right thing.

mailto:cgregg@stanford.edu

The String Library: strcmp and strncmp
strcmp: Compares two strings, character-by-character, and returns 0 for identical
strings, < 0 if s is before t in the alphabet, and > 0 if s is after t (digits are less than
alphabetic characters). Prototype:
 int strcmp(const char *s, const char *t);

strncmp: Performs the same comparison as strcmp except that it stops after n
characters (and does not traverse past null characters). Prototype:
 int strncmp(const char *s, const char *t, size_t n);

8

The String Library: strcmp and strncmp
// file: strcmp_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int main(int argc, char **argv)
{
 char *s1 = argv[1];
 char *s2 = argv[2];
 int cmplen = atoi(argv[3]);

 int cmp_result = strcmp(s1, s2);

 char *result_text;

 if (cmp_result == 0) {
 result_text = "is the same as";
 } else if (cmp_result < 0) {
 result_text = "comes before";
 } else {
 result_text = "comes after";
 }
 printf("String \"%s\" %s \"%s\" in the alphabet.\n",
 s1, result_text,s2);

$./strcmp_ex cat camel 2
String "cat" comes after "camel" in the alphabet.
Up to character 2, "cat" is the same as "camel" in the alphabet.

cmp_result = strncmp(s1, s2, cmplen);
 if (cmp_result == 0) {
 result_text = "is the same as";
 } else if (cmp_result < 0) {
 result_text = "comes before";
 } else {
 result_text = "comes after";
 }
 printf("Up to character %d, \"%s\" %s \"%s\" in the alphabet.\n",
 cmplen, s1, result_text, s2);

 return 0;
}

9

The String Library: strchr
strchr: Returns a pointer to the first occurrence of a character in s, or NULL if
the character is not in the string. Prototype:

 char *strchr(const char *s, int ch);
// file: strchr_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int main(int argc, char **argv)
{
 char *word = argv[1];
 char ch = argv[2][0];

 printf("\"%s\" pointer: %p\n", word, word);
 printf("pointer to the first instance of %c in %s: %p\n",
 ch, word, strchr(word,ch));
 return 0;
}

$./strchr_ex fabulous u
"fabulous" pointer: 0x7ffee9c888c4
pointer to the first instance of u in fabulous: 0x7ffee9c888c7

$./strchr_ex fabulous r
"fabulous" pointer: 0x7ffee0c328c4
pointer to the first instance of r in
fabulous: (nil)

10

The String Library: strstr
strstr: Locate a substring. Returns a pointer to the first occurrence of needle in
haystack, or NULL if the substring does not exist.

char *strstr(const char *haystack, const char *needle);

// file: strstr_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int main(int argc, char **argv)
{
 char *haystack = argv[1];
 char *needle = argv[2];

 printf("\"%s\" pointer: %p\n", haystack, haystack);
 printf("pointer to the first instance of \"%s\" in %s: %p\n",
 needle, haystack, strstr(haystack, needle));
 return 0;
}

$./strstr_ex mississippi ssip
"mississippi" pointer: 0x7ffeeb06b8bc
pointer to the first instance of "ssip" in mississippi: 0x7ffeeb06b8c1

11

The String Library: strcpy
strcpy: Copies src to dst, including the null byte. The caller is responsible for
ensuring that there is enough space in dst to hold the entire copy. The strings
may not overlap.

 char *strcpy(char *dst, const char *src);

// file: strcpy_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int main(int argc, char **argv)
{
 char *word = argv[1];
 // +1 necessary below for terminating null byte
 char wordcopy[strlen(word) + 1];

 strcpy(wordcopy, word);
 word[0] = 'x';
 wordcopy[0] = 'y';

 printf("word: %s\n", word);
 printf("wordcopy: %s\n", wordcopy);
 return 0;
}

$./strcpy_ex hello
word: xello
wordcopy: yello

Be careful! The strcpy function is
responsible for many "buffer overflows"
where the destination did not have
enough space for the source! This is
where nefarious hackers do their thing!

12

The String Library: strncpy
strncpy: Similar to strcpy, except that at most n bytes will be copied. If there is
no null byte in the first n bytes of src, then dst will not be null-terminated!

char *strncpy(char *dst, const char *src, size_t n);

// file: strncpy_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

const int MAX_WORDLEN = 5;

int main(int argc, char **argv)
{
 char *word = argv[1];
 char wordcopy[MAX_WORDLEN];

 // only copy up to one before the end
 strncpy(wordcopy, word, MAX_WORDLEN - 1);
 // put a null at the end in case the word is too long
 wordcopy[MAX_WORDLEN - 1] = '\0';

 printf("word: %s\n", word);
 printf("wordcopy: %s\n", wordcopy);
 return 0;
}

$./strncpy_ex wonderful
word: wonderful
wordcopy: wond

Again, be careful! The strncpy
function won't put a null at the end of
the copy automatically!

13

The String Library: strncpy
The following is a buggy version, without the appropriate checks!

// file: strncpy_buggy.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

const int MAX_WORDLEN = 5;

int main(int argc, char **argv)
{
 char *word = argv[1];
 char wordcopy[MAX_WORDLEN];

 strncpy(wordcopy, word, MAX_WORDLEN);

 printf("word: %s\n", word);
 printf("wordcopy: %s\n", wordcopy);
 return 0;
}

$./strncpy_buggy wonderful
word: wonderful
wordcopy: wonde⍰⍰J⍰⍰⍰

This program has a buffer overflow! Five
chars were copied, but it doesn't put on
the necessary null. This is bad code,
and gets people fired from their jobs.

14

The String Library: strcat and strncat
strcat and strncat: "Concatenate" two strings by appending src onto the end
of dst. strncat only copies up to n bytes, and dst is always null-terminated,
which adds an extra byte!

 char *strcat(char *dst, const char *src);
 char *strncat(char *dst, const char *src, size_t n);

Be careful -- you have to determine the size of the buffer to copy into, and it takes a
bit of arithmetic, especially in the case of strncat. If you are trying to create space
that is exactly the right size, use man strncat to read up to refresh your memory.

15

The String Library: strcat and strncat
// file: strcat_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

const int MAX_CPY = 3;

int main(int argc, char **argv)
{
 char *word1 = argv[1];
 char *word2 = argv[2];

 size_t total_len = strlen(word1) + strlen(word2);
 // word1cpy_a will hold word1 + word 2,
 // so we need an extra byte
 char word1cpy_a[total_len + 1];

 // word1cpy_b will hold word1 + 3 bytes of word2,
 // and we need an extra byte for the null
 char word1cpy_b[strlen(word1) + MAX_CPY+1];
 strcpy(word1cpy_a,word1);
 strcpy(word1cpy_b,word1);

 strcat(word1cpy_a, word2);
 strncat(word1cpy_b, word2, MAX_CPY);

 printf("%s + %s = %s\n",word1, word2, word1cpy_a);
 printf("%s + first %d bytes of %s = %s\n",
 word1,MAX_CPY, word2, word1cpy_b);

 return 0;
}

$./strcat_ex happy birthday
happy + birthday = happybirthday
happy + first 3 bytes of birthday = happybir

How many bytes does "happybirthday"
require?

16

The String Library: strcat and strncat
// file: strcat_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

const int MAX_CPY = 3;

int main(int argc, char **argv)
{
 char *word1 = argv[1];
 char *word2 = argv[2];

 size_t total_len = strlen(word1) + strlen(word2);
 // word1cpy_a will hold word1 + word 2,
 // so we need an extra byte
 char word1cpy_a[total_len + 1];

 // word1cpy_b will hold word1 + 3 bytes of word2,
 // and we need an extra byte for the null
 char word1cpy_b[strlen(word1) + MAX_CPY + 1];
 strcpy(word1cpy_a, word1);
 strcpy(word1cpy_b, word1);

 strcat(word1cpy_a, word2);
 strncat(word1cpy_b, word2, MAX_CPY);

 printf("%s + %s = %s\n",word1, word2, word1cpy_a);
 printf("%s + first %d bytes of %s = %s\n",
 word1, sMAX_CPY, word2, word1cpy_b);

 return 0;
}

$./strcat_ex happy birthday
happy + birthday = happybirthday
happy + first 3 bytes of birthday = happybir

How many bytes does "happybirthday"
require? 14

(5 for happy, 8 for birthday, 1 for null)
strlen("happy") == 5
strlen("birthday") == 8

So, we need 5 + 8 + 1 = 14

17

The String Library: strcat and strncat
// file: strcat_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

const int MAX_CPY = 3;

int main(int argc, char **argv)
{
 char *word1 = argv[1];
 char *word2 = argv[2];

 size_t total_len = strlen(word1) + strlen(word2);
 // word1cpy_a will hold word1 + word 2,
 // so we need an extra byte
 char word1cpy_a[total_len + 1];

 // word1cpy_b will hold word1 + 3 bytes of word2,
 // and we need an extra byte for the null
 char word1cpy_b[strlen(word1) + MAX_CPY + 1];
 strcpy(word1cpy_a, word1);
 strcpy(word1cpy_b, word1);

 strcat(word1cpy_a, word2);
 strncat(word1cpy_b, word2, MAX_CPY);

 printf("%s + %s = %s\n",word1, word2, word1cpy_a);
 printf("%s + first %d bytes of %s = %s\n",
 word1, MAX_CPY, word2, word1cpy_b);

 return 0;
}

$./strcat_ex happy birthday
happy + birthday = happybirthday
happy + first 3 bytes of birthday = happybir

How many bytes does "happybirthday"
require? 14

(5 for happy, 8 for birthday, 1 for null)

How many bytes does "happybir" require?

18

// file: strcat_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

const int MAX_CPY = 3;

int main(int argc, char **argv)
{
 char *word1 = argv[1];
 char *word2 = argv[2];

 size_t total_len = strlen(word1) + strlen(word2);
 // word1cpy_a will hold word1 + word 2,
 // so we need an extra byte
 char word1cpy_a[total_len + 1];

 // word1cpy_b will hold word1 + 3 bytes of word2,
 // and we need an extra byte for the null
 char word1cpy_b[strlen(word1) + MAX_CPY + 1];
 strcpy(word1cpy_a, word1);
 strcpy(word1cpy_b, word1);

 strcat(word1cpy_a, word2);
 strncat(word1cpy_b, word2, MAX_CPY);

 printf("%s + %s = %s\n",word1, word2, word1cpy_a);
 printf("%s + first %d bytes of %s = %s\n",
 word1, MAX_CPY, word2, word1cpy_b);

 return 0;
}

The String Library: strcat and strncat
$./strcat_ex happy birthday
happy + birthday = happybirthday
happy + first 3 bytes of birthday = happybir

How many bytes does "happybirthday"
require? 14

(5 for happy, 8 for birthday, 1 for null)

How many bytes does "happybir" require?
9
(5 for happy, 3 for bir, 1 for null)

strlen("happy") = 5

We will copy at most 3 bytes from word2
We need 5 + 3 + 1 for the total with null. 19

The String Library: strspn
strspn : Calculates and returns the length in bytes of the initial part of s which
contains only characters in accept.

For example, strspn("hello", "efgh") returns 2 because only the first
two characters in “hello” are in “efgh.”

 size_t strspn(const char *s, const char *accept)

Learn this function well! It tends to make an appearance on CS 107 midterms and
finals!

20

The String Library: strcspn
strcspn : Similar to strspn except that strcspn returns the length in bytes of
the initial part of s which does not contain any characters in reject.

For example, strcspn("hello", "mnop") returns 4 because the first four
characters in “hello” are not in “mnop.”

 size_t strcspn(const char *s, const char *reject);

Learn this function well, and make sure you understand how it works and the
difference between strspn and strcspn!

BTW, the "c" in strcspn stands for "complement" -- the complement of the reject
characters is what is being "spanned".

21

The String Library: strspn and strcspn example
// file: strspn_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int main(int argc, char **argv)
{
 char *word = argv[1];
 char *charset_accept = argv[2];
 char *charset_reject = argv[3];

 size_t strspn_count = strspn(word, charset_accept);
 size_t strcspn_count = strcspn(word, charset_reject);

 printf("The first %lu initial characters in \"%s\" are in \"%s\"\n",
 strspn_count, word, charset_accept);
 printf("The first %lu initial characters in \"%s\" are not in \"%s\"\n",
 strcspn_count, word, charset_reject);
 return 0;
}

$./strspn_ex tremendous rtme dmns
The first 5 initial characters in "tremendous" are in "rtme"
The first 3 initial characters in "tremendous" are not in "dmns" 22

The String Library: strdup and strndup
strdup : Returns a pointer to a heap-allocated string which is a copy of s. It is
the responsibility of the caller to free the pointer when it is no longer needed.:

char *strdup(const char *s);  

strndup : Like strdup but only copies up to n bytes. The resulting
string will be null-terminated.

char *strndup(const char *s, size_t n);

These two functions take care of allocating space for the duplicate of the string, but
both require the calling function to free the copy when it is no longer needed. If the
copy isn't freed, this is considered a memory leak, and can waste memory.

23

The String Library: strdup and strndup
// file: strdup_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

const int BYTES_TO_COPY = 3;

int main(int argc, char **argv)
{
 char *word = argv[1];

 // remember to free these!
 char *word_copy = strdup(word);
 char *word_copy3 = strndup(word, BYTES_TO_COPY);

 printf("word: %s\n", word);
 printf("word_copy: %s\n", word_copy);
 printf("First %d letters of word: %s\n", BYTES_TO_COPY, word_copy3);

 // free the memory once no longer needed
 free(word_copy);
 free(word_copy3);

 return 0;
}

$./strdup_ex February
word: February
word_copy: February
First 3 letters of word: Feb

24

Why don't strings keep their own length?
C strings differ from C++ strings in that they are simple, and are just a null-
terminated character array.

Strings didn't have to be this way -- when C was being developed, another
popular language, Pascal, had "length-prefixed" strings, which which stored the
length in the first byte of the string. Although this made finding the length of a
string O(1), it limited the size of strings to 256 characters! (Later versions of Pascal
added support for up to 64-bit prefixes, but this had the downside of adding
length to the string, which takes up space).

The original justification in C was that having only 1-byte of overhead was nice
because memory was limited (remember this was the 1970s!), and the terminating
null was better than a prefix-byte because it didn't limit the size of the string.

25

References and Advanced Reading

•References:
•https://en.wikibooks.org/wiki/C_Programming/String_manipulation
•https://www.tutorialspoint.com/c_standard_library/ctype_h.htm
•https://www.tutorialspoint.com/c_standard_library/string_h.htm

•Advanced Reading:
•https://www.cs.bu.edu/teaching/cpp/string/array-vs-ptr/
•https://www.quora.com/Why-dont-we-need-null-character-in-arrays-as-in-strings-
to-know-its-end-point

•What is the justification for a null-terminated string? https://stackoverflow.com/
questions/4418708/whats-the-rationale-for-null-terminated-strings

•Interesting criticism of the Pascal language for its string type: http://
www.lysator.liu.se/c/bwk-on-pascal.html

26

https://en.wikibooks.org/wiki/C_Programming/String_manipulation
https://www.tutorialspoint.com/c_standard_library/ctype_h.htm
https://www.tutorialspoint.com/c_standard_library/string_h.htm
https://www.cs.bu.edu/teaching/cpp/string/array-vs-ptr/
https://www.quora.com/Why-dont-we-need-null-character-in-arrays-as-in-strings-to-know-its-end-point
https://www.quora.com/Why-dont-we-need-null-character-in-arrays-as-in-strings-to-know-its-end-point
https://stackoverflow.com/questions/4418708/whats-the-rationale-for-null-terminated-strings
https://stackoverflow.com/questions/4418708/whats-the-rationale-for-null-terminated-strings
http://www.lysator.liu.se/c/bwk-on-pascal.html
http://www.lysator.liu.se/c/bwk-on-pascal.html

