
Wednesday, January 24, 2024

Computer Systems

Winter 2024

Stanford University

Computer Science Department

Reading: Reader: Ch 4, C Primer, K&R Ch 1.6,
5.1-5.5

Lecturer: Chris Gregg

CS 107
Lecture 7: Arrays
and Pointers in C

Today's Topics
• Logistics

• Assign1 — Due tonight at 11:59pm
• Assign2 will go out on today

• Reading: Reader: C Primer
• Pointers
• Arrays in C
• Pointers to arrays
• Pointer arithmetic -vs- bracket notation
• Pointers -vs- arrays
• When is 1 + 1 ≠ 2 ?
• Arrays passed by reference
• memcpy / memmove
• literal strings
• dereferencing NULL, bogus address…

C Pointers
If you took CS 106B (or another C++ based class), you learned about pointers,
which are simply memory addresses. A pointer is an integer, and on the myth
machines, all pointers are 64-bits, or 8 bytes long.

It is difficult to stress how important understanding that a pointer is just a memory
address. Let's look at some examples.

C Pointers
// file: pointer_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int x = 7;
 int *xptr = &x; // pointer to x
 printf("x: %d\n", x);
 printf("address of x: %p\n", xptr);
 printf("x via dereferencing xptr: %d\n", *xptr);

 return 0;
}

$./pointer_ex1
x: 7
address of x: 0x7ffeea3c948c
x via dereferencing xptr: 7

C Pointers to Pointers
We will often use pointers to pointers, which means that we have the address of a pointer.
// file: ptrptr_ex.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int x = 7;
 int *xptr = &x; // pointer to x
 int **xptrptr = &xptr; // pointer to xptr
 printf("x: %d\n", x);
 printf("address of x: %p\n", xptr);
 printf("address of xptr: %p\n", xptrptr);
 printf("address of x via dereferencing xptrptr: %p\n", *xptrptr);
 printf("x via double-dereferencing xptrptr: %d\n", **xptrptr);

 return 0;
}

$./ptrptr_ex
x: 7
address of x: 0x7ffee40f148c
address of xptr: 0x7ffee40f1480
address of x via dereferencing xptrptr: 0x7ffee40f148c
x via double-dereferencing xptrptr: 7

C Pointers to Pointers
Question: what does the following code print out?
// file: ptrptr_mystery.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 char *str = "CS107";
 char **strptr = &str;

 char mystery = **strptr;
 printf("Mystery: %c\n",mystery);
 return 0;
}

C Pointers to Pointers
Question: what does the following code print out?
// file: ptrptr_mystery.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 char *str = "CS107";
 char **strptr = &str;

 char mystery = **strptr;
 printf("Mystery: %c\n",mystery);
 return 0;
}

Answer: C

A single dereference *strptr
produces the address of str.

If we were to dereference str:

*str

this would give us the first character of
str, or 'C'.

So, a double-dereference of strptr, or **strptr produces the character C.

Why do we use pointers?
Pointers are used as references to values (and for arrays, which we will get to next).

Pointers let us write functions that can modify and use values that are created elsewhere
in the program, without having to make a copy of the values themselves.

Pointers allow us to refer to large data structures in a compact way. One 8-byte pointer
can refer to any size data structure.

Pointers allow us to reserve new memory during a program (using malloc, calloc, and
realloc, which we will cover later). It is convenient to request memory inside a function
that you do not have details about at compile time (e.g., the length of a potential array).

Pointers to pointers allow us to refer to a particular element in an array generically, without
even knowing about the details of what the array has in it. We will see this next week.

Arrays in C
Arrays in C are contiguous blocks of memory
with a fixed length.

A programmer can access elements in an array
using either bracket notation (e.g., arr[2]) or
by dereferencing an offset from the beginning
of the array (e.g., *(arr + 2), more on this
in a couple of slides).

Although arrays sometimes behave like
pointers, they are distinct and should not be
confused with pointers.

Array Example
// file: array_ex.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 short values[] = {1, -1, 5, 2, -4, 8};

 int nelems = sizeof(values) / sizeof(values[0]);

 for (int i = 0; i < nelems; i++) {
 printf("%d",values[i]);
 i == nelems - 1 ? printf("\n") : printf(", ");
 }
 return 0;
}
$./array_ex
1, -1, 5, 2, -4, 8

Address Value

0x8a
8

0x88
-4

0x86
2

0x84
5

0x82
-1

0x80
1

The sizeof for an array reports the total number of bytes in the array. Not true for
pointers!

values

Arrays are not pointers!
// file: array_sizeof.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 short values[] = {1, -1, 5, 2, -4, 8};

 printf("sizeof(values) = %lu\n", sizeof(values));
 printf("sizeof(values[0]) = %lu\n", sizeof(values[0]));

 return 0;
}

$./array_sizeof
\sizeof(values) = 12
sizeof(values[0]) = 2

Arrays can behave like
pointers, but there is no
pointer associated with the
array values in the code to
the left.

The compiler keeps track of
where in memory the array is,
and the compiler also knows
how big the array is (which is
why sizeof(values) is
12. Each element is 2 bytes
(because it is an array of
shorts, and there are six
elements).

Arrays are not pointers!
// file: arrays_not_pointers.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int arr[3] = {1,2,3};
 int a = 4;
 arr = &a; // produces compile error
 return 0;
}

$ make arrays_not_pointers
gcc -g -O0 -std=gnu99 -Wall $warnflags arrays_not_pointers.c -o arrays_not_pointers
arrays_not_pointers.c:9:9: error: array type 'int [3]' is not assignable
 arr = &a; // produces compile error
    ~~~ ^
1 error generated.
make: *** [arrays_not_pointers] Error 1

You cannot assign a different 
value to an array, because it 
isn't a pointer.



You can assign array addresses to pointers 
// file: assign_array_to_pointer.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
    int arr[3] = {1,2,3};
    int *arrptr = arr;
    arrptr = &arr[0]; // also works
    printf("%p\n", arrptr);
    printf("%p\n", arr);
    printf("%p\n", &arr[0]);
    printf("%p\n", &arr); // also works, but try to avoid this
    return 0;
}

$ ./assign_array_to_pointer
0x7ffee363d60c
0x7ffee363d60c
0x7ffee363d60c
0x7ffee363d60c

Here, arr is "decaying" 
into a pointer when we 
assign its value to 
arrptr.



Pointers to arrays
A pointer to an array points to the first element in the 
array. 
We can use pointer arithmetic or bracket notation to 
access the elements in the array. If we have a pointer, we 
can actually change the value of the pointer to point to 
another place in the array.

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

int arr[] = {8,2,7,14,-5,42};
int *arrptr = arr; // arrptr now points to the 8

arr

arrptr
0x7ffeea3c9484

Note: arrptr has 8 bytes allocated 
to it in memory. So, we could change 
the value of arrptr. Conversely, arr 
does not have any memory set aside 
for it — it is just a name the compiler 
uses to refer to the location of the 
array in memory.



Pointers to arrays
A pointer to an array points to the first element in the 
array. 
We can use pointer arithmetic or bracket notation to 
access the elements in the array. If we have a pointer, we 
can actually change the value of the pointer to point to 
another place in the array.

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

int arr[] = {8, 2, 7, 14, -5, 42};
int *arrptr = arr; // arrptr now points to the 8
arrptr++; // arrptr now points to the 2

arr

arrptr
0x7ffeea3c9488

Notice that the expression arrptr++ incremented 
arrptr by 4! The compiler knows how wide the type is!

Important!!!



Pointers to arrays
A very important piece of information was on the bottom of the last slide: 

Notice that the expression arrptr++ incremented arrptr by 4! The compiler 
knows how wide the type is! 

One of the main reasons we have pointer types is so the compiler knows how big 
each element in the array is. Continue the printout from the following program:

int main(int argc, char **argv)
{
    int arr[] = {1, 2, 3, 4, 5, 6};
    int *arrptr = arr; // arr decays to a pointer

    printf("%p\n", arrptr);
    printf("%p\n", arrptr + 1);
    printf("%p\n", arrptr + 2);
    printf("%p\n", arrptr + 3);
    printf("%p\n", arrptr + 4);
    printf("%p\n", arrptr + 5);
    return 0;
}

./ptr_arith
0x7ffedfe72780



Pointers to arrays
A very important piece of information was on the bottom of the last slide: 

Notice that the expression arrptr++ incremented arrptr by 4! The compiler 
knows how wide the type is! 

One of the main reasons we have pointer types is so the compiler knows how big 
each element in the array is. Continue the printout from the following program:

./ptr_arith
0x7ffedfe72780
0x7ffedfe72784

int main(int argc, char **argv)
{
    int arr[] = {1, 2, 3, 4, 5, 6};
    int *arrptr = arr; // arr decays to a pointer

    printf("%p\n", arrptr);
    printf("%p\n", arrptr + 1);
    printf("%p\n", arrptr + 2);
    printf("%p\n", arrptr + 3);
    printf("%p\n", arrptr + 4);
    printf("%p\n", arrptr + 5);
    return 0;
}



Pointers to arrays
A very important piece of information was on the bottom of the last slide: 

Notice that the expression arrptr++ incremented arrptr by 4! The compiler 
knows how wide the type is! 

One of the main reasons we have pointer types is so the compiler knows how big 
each element in the array is. Continue the printout from the following program:

./ptr_arith
0x7ffedfe72780
0x7ffedfe72784
0x7ffedfe72788
0x7ffedfe7278c
0x7ffedfe72790
0x7ffedfe72794

int main(int argc, char **argv)
{
    int arr[] = {1, 2, 3, 4, 5, 6};
    int *arrptr = arr; // arr decays to a pointer

    printf("%p\n", arrptr);
    printf("%p\n", arrptr + 1);
    printf("%p\n", arrptr + 2);
    printf("%p\n", arrptr + 3);
    printf("%p\n", arrptr + 4);
    printf("%p\n", arrptr + 5);
    return 0;
}



Pointers to arrays
Continue the printout from the following program:
int main(int argc, char **argv)
{
    long arr[] = {1, 2, 3, 4, 5, 6};
    long *arrptr = arr; // arr decays to a pointer

    printf("%p\n", arrptr);
    printf("%p\n", arrptr + 1);
    printf("%p\n", arrptr + 2);
    printf("%p\n", arrptr + 3);
    printf("%p\n", arrptr + 4);
    printf("%p\n", arrptr + 5);
    return 0;
}

./ptr_arith
0x7ffedfc23770



Pointers to arrays
Continue the printout from the following program:

./ptr_arith
0x7ffedfc23770
0x7ffedfc23778
0x7ffedfc23780
0x7ffedfc23788
0x7ffedfc23790
0x7ffedfc23798

Note that 0x8 + 0x8 = 0x10

int main(int argc, char **argv)
{
    long arr[] = {1, 2, 3, 4, 5, 6};
    long *arrptr = arr; // arr decays to a pointer

    printf("%p\n", arrptr);
    printf("%p\n", arrptr + 1);
    printf("%p\n", arrptr + 2);
    printf("%p\n", arrptr + 3);
    printf("%p\n", arrptr + 4);
    printf("%p\n", arrptr + 5);
    return 0;
}

The compiler knows how wide the type is! 



Pointers to arrays
Continue the printout from the following program:

./ptr_arith
0x7ffee9fe678b

int main(int argc, char **argv)
{
    char arr[] = {1, 2, 3, 4, 5, 6};
    char *arrptr = arr; // arr decays to a pointer

    printf("%p\n", arrptr);
    printf("%p\n", arrptr + 1);
    printf("%p\n", arrptr + 2);
    printf("%p\n", arrptr + 3);
    printf("%p\n", arrptr + 4);
    printf("%p\n", arrptr + 5);
    return 0;
}



Pointers to arrays
Continue the printout from the following program:

./ptr_arith
0x7ffee9fe678b
0x7ffee9fe678c
0x7ffee9fe678d
0x7ffee9fe678e
0x7ffee9fe678f
0x7ffee9fe6790

int main(int argc, char **argv)
{
    char arr[] = {1, 2, 3, 4, 5, 6};
    char *arrptr = arr; // arr decays to a pointer

    printf("%p\n", arrptr);
    printf("%p\n", arrptr + 1);
    printf("%p\n", arrptr + 2);
    printf("%p\n", arrptr + 3);
    printf("%p\n", arrptr + 4);
    printf("%p\n", arrptr + 5);
    return 0;
}

The compiler knows how wide the type is! 



Pointers to arrays

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

// file: pointer_to_array.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
    int arr[] = {8, 2, 7, 14, -5, 42};
    int nelems = sizeof(arr) / sizeof(arr[0]);

    int *arrptr = arr; // arrptr now points to the 8
    printf("Address of array:  %p\n", arr);
    printf("Value of arrptr: %p\n", arrptr);

    for (int i = 0; i < nelems; i++) {
        printf("%d", *arrptr++); // we need to unpack this!
        i == nelems - 1 ? printf("\n") : printf(", ");
    }
    return 0;
}

arr$ ./pointer_to_array
Address of array:  0x7ffeea3c9484
Value of arrptr: 0x7ffeea3c9484
8, 2, 7, 14, -5, 42



Pointers to arrays
// file: pointer_to_array.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
    int arr[] = {8,2,7,14,-5,42};
    int nelems = sizeof(arr) / sizeof(arr[0]);

    int *arrptr = arr; // arrptr now points to the 8
    printf("Address of array:  %p\n",arr);
    printf("Value of arrptr: %p\n",arrptr);

    for (int i=0; i < nelems; i++) {
        printf("%d",*arrptr++); // we need to unpack this!
        i == nelems - 1 ? printf("\n") : printf(", ");
    }
    return 0;
}

*arrptr++

means: 

1. dereference arrptr 
and return the value. 

2. increment the pointer 
value for arrptr. 

It does not mean "add 
one to the value that 
arrptr points to! To do

would need to write: (*arrptr)++



Pointers to arrays
// file: increment_in_array.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
    int arr[] = {8, 2, 7, 14, -5, 42};
    int nelems = sizeof(arr) / sizeof(arr[0]);

    int *arrptr = arr; // arrptr now points to the 8

    // increment all values in array
    for (int i = 0; i < nelems; i++) {
        (*arrptr)++;
        arrptr++;
    }

    for (int i = 0; i < nelems; i++) {
        printf("%d", arr[i]);
        i == nelems - 1 ? printf("\n") : printf(", ");
    }
    return 0;
}

This is not the cleanest code, but you 
will see things like this in C quite 
often. 

You could actually combine the 
highlighted line and the next line into 
the even more unreadable: 

(*arrptr++)++;

Please try to write nice clean code. 
(i.e., not this ☝)

BTW, the combined line of code does the following: 1. returns the value pointed 
to by arrptr, 2. increments both arrptr and the value in the array.



More examples of arrays decaying to pointers
// file: array.c
#include<stdio.h>
#include<stdlib.h>

void sizeof_test(int arr[]) {
    printf("sizeof(arr) in function: %lu\n", sizeof(arr));
}

int main()
{
    int arr[] = {1, 3, 4, 2, 7, 9};

    printf("%d\n", arr[2]); // prints 4
    printf("%d\n", *(arr+5)); // prints 9

    // set the value of the third element
    arr[2] = 42;
    printf("%d\n", arr[2]); // prints 42

    printf("sizeof(arr) in main: %lu\n", sizeof(arr));
    sizeof_test(arr);

    return 0;
}

When you pass an array into a 
function that expects a pointer, the 
array decays into a pointer, and it 
loses the ability to determine its size 
using sizeof. 

In the sizeof_test function, even 
though the declaration looks like an 
array, it is really an int pointer.

$ ./array
4
9
42
sizeof(arr) in main: 24
sizeof(arr) in function: 8



More examples of arrays decaying to pointers
Note the use of pointer arithmetic 
and bracket notation — either is 
fine for an array, because the array 
variable decays to a pointer when 
used in these circumstances.

// file: array.c
#include<stdio.h>
#include<stdlib.h>

void sizeof_test(int arr[]) {
    printf("sizeof(arr) in function: %lu\n", sizeof(arr));
}

int main()
{
    int arr[] = {1, 3, 4, 2, 7, 9};

    printf("%d\n", arr[2]); // prints 4
    printf("%d\n", *(arr+5)); // prints 9

    // set the value of the third element
    arr[2] = 42;
    printf("%d\n", arr[2]); // prints 42

    printf("sizeof(arr) in main: %lu\n", sizeof(arr));
    sizeof_test(arr);

    return 0;
}



Arrays are passed by reference
Arrays are passed by reference 
when used as arguments in a 
function, because  the array 
variable decays to a pointer, 
which is just an address. 

In other words, a function has 
access to the array in the 
function. 

// file: array_pass_by_ref.c
#include<stdio.h>
#include<stdlib.h>

void scale(int array[], int factor, size_t nelems)
{
    for (size_t i = 0; i < nelems; i++) {
        array[i] *= factor;
    }
}
int main(int argc, char **argv)
{
    int arr[] = {1, 2, 3, 4, 5};
    size_t nelems = sizeof(arr) / sizeof(arr[0]);

    scale(arr, 10, nelems);
    for (int i = 0; i < nelems; i++) {
        printf("%d", *(arr + i));
        i == nelems - 1 ? printf("\n") : printf(",");
    }

    return 0;
}

$ ./array_pass_by_ref
10,20,30,40,50



Arrays are passed by reference
If a programmer wants 
to indicate that an array 
will not be modified, she 
passes it as a const 
array. 

// file: dot_product.c
#include<stdio.h>
#include<stdlib.h>

long dot_prod(const long a[], const long b[], size_t nelems)
{
    long result = 0;
    for (size_t i = 0; i < nelems; i++) {
        result += a[i] * b[i];
    }
    return result;
}
int main(int argc, char **argv)
{
    long a[] = {1, 2, 3};
    long b[] = {8, 9, 10};
    size_t nelems = sizeof(a) / sizeof(a[0]);
    printf("Dot product of a . b: %lu\n", dot_prod(a, b, nelems));
    return 0;
}

$ ./dot_product
Dot product of a . b: 56



memcpy
In the last lecture, we discussed strcpy and strncpy, which are used to make 
copies of strings into buffers large enough to hold them. A more generic memory 
copying function, memcpy, is used to copy array data. 

void *memcpy(void *dest, const void *src, size_t n);

We haven't yet covered the "void *" pointer yet, but for now it is enough to 
know that any pointer can be passed into the memcpy function. Note that, like 
strncpy, memcpy has a parameter for the number of bytes to be copied, n. 
Unlike strncpy, exactly n bytes will always be copied (including NULL bytes (0s), 
which are not special in data that is not a string) 

When using memcpy, src and dest may not overlap. If you have overlapping 
areas, use memmove, instead (covered next) (and if you try to use memcpy, it may 
work, but is undefined by the C standard).



memcpy
// file: memcpy_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int main(int argc, char **argv)
{
    int src[] = {1, 2, 3, 4, 5};
    int nelems = sizeof(src) / sizeof(src[0]);

    int dest[nelems]; // will set aside enough bytes

    memcpy(dest, src, nelems * sizeof(int));

    for (int i = 0; i < nelems; i++) {
        printf("%d", dest[i]);
        i == nelems - 1 ? printf("\n") : printf(", ");
    }
    return 0;
}

$ ./memcpy_ex
1, 2, 3, 4, 5

Note that we passed the 
number of bytes. We 
often have to use 
sizeof(type) to 
determine how wide each 
element in the array is.



memmove
The memmove function performs the same operation as memcpy, but it allows 
copying from arrays that overlap. 

void *memmove(void *dest, const void *src, size_t n);

The reason for using memcpy over memmove is that sometimes memcpy can be 
faster, as it does not have to do anything special to determine if there are 
overlapping areas. 

If you are fine-tuning a program that absolutely has to have as-fast-as-possible 
copying, and you know that the memory locations don't overlap, use memcpy. 
Otherwise, just use memmove.



memmove
// file: memmove_ex.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int main(int argc, char **argv)
{
    int arr[] = {1, 2, 3, 4, 5};
    int nelems = sizeof(arr) / sizeof(arr[0]);

    memove(arr, arr + 2, 3 * sizeof(int));

    for (int i = 0; i < nelems; i++) {
        printf("%d", arr[i]);
        i == nelems - 1 ? printf("\n") : printf(", ");
    }
    return 0;
}

$ ./memmove_ex
3, 4, 5, 4, 5

Note that memmove does 
not do any "moving" in 
the sense that the 
elements that it copied 
from are still present 
where they were originally, 
unless they became 
written over because of 
overlap.



declaring strings as arrays or pointers
It is possible to declare a specific string using a string literal in two different ways in C, 
and you should carefully note the differences: 

char s1[] = "string in an array"; // modifiable
char *s2 = "string literal with pointer"; // not modifiable

In the first case, the string literal is used to initialize an array that you can modify (and 
we have seen examples of this already). 

In the second case, there is no array, and there is just a pointer to the string literal. 
The string literal is put into read only memory, so it cannot be modified. The following 
would likely cause your program to crash: 

s2[0] = 'S';



declaring strings as arrays or pointers
// file: string_literal_crash.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
    char *s2 = "string literal with pointer";
    s2[0] = 'S'; // crashes here

    printf("s2: %s\n", s2);
    return 0;
}

$ ./string_literal_crash
Segmentation fault (core dumped)

$ gdb string_literal_crash
(gdb) run
Starting program: /
afs/.ir.stanford.edu/users/c/g/
cgregg/tmp/string_literal_crash

Program received signal SIGSEGV, 
Segmentation fault.
0x0000000000400541 in main (argc=1, 
argv=0x7fffffffea78) at 
string_literal_crash.c:8
8     s2[0] = 'S'; // crashes here



be careful dereferencing!
Be careful when dereferencing pointers. NULL pointers or bogus addresses lead to 
segfaults:

$ ./deref_problems 0x1234
Let's see what int is at address 1234:
Segmentation fault: 11
$ ./deref_problems 0x7ffeea3c948c
Let's see what int is at address 7ffeea3c948c:
Segmentation fault: 11

// file: deref_problems.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
    char *err;
    size_t address = strtoul(argv[1], &err,0);
    printf("Let's see what int is at address %lx:\n", address);
    printf("%d\n", *(char *)address);
    return 0;
}



be careful with your array bounds!
C does not check for the end of your array, and it will gladly let you walk right off 
the end of the array:
// file: buffer_overflow.c
#include<stdio.h>
#include<stdlib.h>

#define NUMS 10000

int main(int argc, char **argv)
{
    int arr[] = {0, 1, 2, 3, 4};
    for (int i = 0; i < NUMS; i++) {
        printf("%d", *(arr + i));
        i == NUMS ? printf("\n") : printf(",");
    }

    return 0;
}

$ ./buffer_overflow
0,1,2,3,4,32767,-1052713984,1018355125,41959
36,0,-1863256016,32660,0,0,935138104,32767,0
,1,4195734,0,0,0,1702390139,-2045811791,4195
488,0,935138096,32767,0,0,0,0,1299736955,204
5840459,-2039977605,2032550608,0,0,0,0,0,0,1
,0,4195734,0,4196048,0,0,0,0,0,4195488,0,935
138096,32767,0,0,4195529,0,935138088,32767,2
8,0,1,0,935140602,32767,0,0,935140620,32767,
935140640,32767,935140651,32767,935140667,32
767,935140681,32767,935140714,32767,93514073
4,32767,935140746,32767,935140768,32767,9351
40938,32767,935140971,32767,935141005,32767,
935141016,32767,935141033,32767,935141079,32
767,935141087,32767,935141118,32767,93514113
4,32767,935141149,32767,935141214,32767,9351
41264,32767,935141297,32767,935141317,32767,
0,0,33,0,935301120,32767,16,0,-1075053569,0,
6,0,4096,0,17,0,100,0,3,0,4194368,0,4,0,56,0
,5,0,9,0,7,0,-1859416064,32660,8,0,0,0,9,0,4
195488,0,11,0,306920,0,12,0,Segmentation 
fault (core dumped)



Pointers to Arrays — Memory Footprint

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

One tricky part of CS 107 for many students is getting comfortable with what the 
memory looks like for pointers to arrays, particularly when the arrays themselves are 
filled with pointers. Let's take a look at two examples.
For the first example, let's look at the array defined as 
follows: 

int arr[] = {8, 2, 7, 14, -5, 42};

How many bytes does each int take up in the array?



Pointers to Arrays — Memory Footprint

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

4

One tricky part of CS 107 for many students is getting comfortable with what the 
memory looks like for pointers to arrays, particularly when the arrays themselves are 
filled with pointers. Let's take a look at two examples.
For the first example, let's look at the array defined as 
follows: 

int arr[] = {8, 2, 7, 14, -5, 42};

How many bytes does each int take up in the array?



Pointers to Arrays — Memory Footprint
One tricky part of CS 107 for many students is getting comfortable with what the 
memory looks like for pointers to arrays, particularly when the arrays themselves are 
filled with pointers. Let's take a look at two examples.

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

For the first example, let's look at the array defined as 
follows: 

int arr[] = {8, 2, 7, 14, -5, 42};

What if we wanted to write a swap function for the 
array (to swap two elements)? We can do it with 
regular int variables:

void swapA(int *arr, int index_x, int index_y)
{
   int tmp = *(arr + index_x);
   *(arr + index_x) = *(arr + index_y);
   *(arr + index_y) = tmp;
}



Pointers to Arrays — Memory Footprint
One tricky part of CS 107 for many students is getting comfortable with what the 
memory looks like for pointers to arrays, particularly when the arrays themselves are 
filled with pointers. Let's take a look at two examples.

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

For the first example, let's look at the array defined as 
follows: 

int arr[] = {8, 2, 7, 14, -5, 42};

What if we wanted to write a swap function for the 
array (to swap two elements)? Can we do it with 
memmove?



Pointers to Arrays — Memory Footprint
One tricky part of CS 107 for many students is getting comfortable with what the 
memory looks like for pointers to arrays, particularly when the arrays themselves are 
filled with pointers. Let's take a look at two examples.

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

For the first example, let's look at the array defined as 
follows: 

int arr[] = {8, 2, 7, 14, -5, 42};

What if we wanted to write a swap function for the 
array (to swap two elements)? Can we do it with 
memmove? Sure:
void swapB(int *arr, int index_x, int index_y)
{
    int tmp;
    memmove(&tmp, arr + index_x, sizeof(int));
    memmove(arr + index_x, arr + index_y, sizeof(int));
    memmove(arr + index_y, &tmp, sizeof(int));
}



Pointers to Arrays — Memory Footprint

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

What if we wanted to write a swap function for the 
array (to swap two elements)? Can we do it with 
memove? Sure:
void swapB(int *arr, int index_x, int index_y)
{
    int tmp;
    memmove(&tmp, arr + index_x, sizeof(int));
    memmove(arr + index_x, arr + index_y, sizeof(int));
    memmove(arr + index_y, &tmp, sizeof(int));
}

This works because we know the size of the 
elements in the array (they are ints) 

As long as we know the size of the elements, 
we can always swap (or compare, or 
whatever) two elements in an array!



Pointers to Arrays — Memory Footprint
Full example:

// file: pointer_to_array1.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

void swapA(int *arr, int index_x, int index_y)
{
   int tmp = *(arr + index_x);
   *(arr + index_x) = *(arr + index_y);
   *(arr + index_y) = tmp;
}

void swapB(int *arr, int index_x, int index_y)
{
    int tmp;
    memmove(&tmp, arr + index_x, sizeof(int));
    memmove(arr + index_x, arr + index_y, sizeof(int));
    memmove(arr + index_y, &tmp, sizeof(int));
}

int main(int argc, char **argv)
{
    int arr[] = {8, 2, 7, 14, -5, 42};
    swapA(arr, 0, 5); // swaps 8 and 42
    swapB(arr, 1, 2); // swaps 2 and 7
    int nelems = sizeof(arr) / sizeof(arr[0]);
    for (int i = 0; i < nelems; i++) {
        printf("%d", arr[i]);
        i == nelems - 1 ? printf("\n") : printf(", ");
    }
    return 0;
}

$ ./pointer_to_array1
42, 7, 2, 14, -5, 8



Pointers to Arrays — Memory Footprint
For our second example, let's look at argv, which is an array of char * pointers: 

argv

0x100

Address Value

0x128
0xf89f

0x120
0xf898

0x118
0xf891

0x110
0xf887

0x108
0xf881

0x100
0xf838

0xf881 a p p l e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

6

0xf838 s w a p w o r d s \0

./swapwords apple banana orange peach pear

Can we write a function to swap two 
pointers in the array? 



Pointers to Arrays — Memory Footprint
For our second example, let's look at argv, which is an array of char * pointers: 

./swapwords apple banana orange peach pear

Can we write a function to swap two 
pointers in the array? Sure:
void swapA(char **arr, int index_x, int index_y)
{
   char *tmp = *(arr + index_x);
   *(arr + index_x) = *(arr + index_y);
   *(arr + index_y) = tmp;
}

Note (very important!) -- Only the 
pointers are getting swapped! 
We are not copying the text from 
each string, at all. For all we 
know, the strings might be any 
type!

argv

0x100

Address Value

0x128
0xf89f

0x120
0xf898

0x118
0xf891

0x110
0xf887

0x108
0xf881

0x100
0xf838

0xf881 a p p l e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

6

0xf838 s w a p w o r d s \0



Pointers to Arrays — Memory Footprint
For our second example, let's look at argv, which is an array of char * pointers: 

./swapwords apple banana orange peach pear

Can we write a function to swap two 
pointers in the array using memove?

argv

0x100

Address Value

0x128
0xf89f

0x120
0xf898

0x118
0xf891

0x110
0xf887

0x108
0xf881

0x100
0xf838

0xf881 a p p l e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

6

0xf838 s w a p w o r d s \0



Pointers to Arrays — Memory Footprint
For our second example, let's look at argv, which is an array of char * pointers: 

./swapwords apple banana orange peach pear

Can we write a function to swap two 
pointers in the array using memove?
void swapB(char **arr, int index_x, int index_y)
{
    char *tmp;
    memmove(&tmp, arr + index_x, sizeof(char *));
    memmove(arr + index_x, arr + index_y, sizeof(char *));
    memmove(arr + index_y, &tmp, sizeof(char *));
}

argv

0x100

Address Value

0x128
0xf89f

0x120
0xf898

0x118
0xf891

0x110
0xf887

0x108
0xf881

0x100
0xf838

0xf881 a p p l e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

6

0xf838 s w a p w o r d s \0
In this case, we need to move 8 bytes 
at a time, and we conveniently get 
that value using sizeof().



Pointers to Arrays — Memory Footprint
Full example:

// file: swapwords.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

void swapA(char **arr, int index_x, int index_y)
{
   char *tmp = *(arr + index_x);
   *(arr + index_x) = *(arr + index_y);
   *(arr + index_y) = tmp;
}

void swapB(char **arr, int index_x, int index_y)
{
    char *tmp;
    memmove(&tmp, arr + index_x, sizeof(char *));
    memmove(arr + index_x, arr + index_y, sizeof(char *));
    memmove(arr + index_y, &tmp, sizeof(char *));
}

int main(int argc, char **argv)
{
    if (argc < 6) {
        printf("Usage:\n\t%s s1 s2 s3 s4 s5\n",argv[0]);
        return -1;
    }
    // assume:
    // ./swapwords apple banana orange peach pear
    swapA(argv, 1, 5); // swaps apple and pear
    swapB(argv, 2, 3); // swaps banana and orange
    for (int i = 1; i < argc; i++) { // skip progname
        printf("%s",argv[i]);
        i == argc - 1 ? printf("\n") : printf(", ");
    }
    return 0;
}

$ ./swapwords apple banana orange peach pear
pear, orange, banana, peach, apple



Pointers to Arrays — Memory Footprint
You might be asking -- why would we ever want to use the memmove function, if 
we already know the type? 

Ah -- this is a key insight that we will discuss soon! When we get to "void *" 
pointers, we will find out that there is no way to do this without memmove, and 
we will actually need information about the width of the type itself! 

Preview: void swap_generic(void *arr, int index_x, int index_y, int width)
{
    char tmp[width];
    void *x_loc = (char *)arr + index_x * width;
    void *y_loc = (char *)arr + index_y * width;

    memmove(tmp, x_loc, width);
    memmove(x_loc, y_loc, width);
    memmove(y_loc, tmp, width);
}



References and Advanced Reading

•References: 
•K&R C Programming (from our course) 
•Course Reader, C Primer 
•Awesome C book: http://books.goalkicker.com/CBook  

•Advanced Reading: 
•https://www.cs.bu.edu/teaching/cpp/string/array-vs-ptr/  
•https://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays 

http://books.goalkicker.com/CBook
https://www.cs.bu.edu/teaching/cpp/string/array-vs-ptr/
https://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays

