
Friday, January 29, 2024

Computer Systems

Winter 2024

Stanford University

Computer Science Department

Reading: Reader: Ch 4, C Primer, K&R Ch 1.6,
5.1-5.5

Lecturer: Chris Gregg

CS 107
Lecture 9: Arrays
and Pointers in C

Today's Topics

• Logistics
• Assign2 due Wednesday
• Midterm coming up next week — we will have review materials out this

week
• Reading: Reader: C Primer

• Pointers and memcpy / memmove
• Arrays of strings

Pointers to Arrays — Memory Footprint
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. Let's take a look at two examples.

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

For the first example, let's look at the array defined as
follows:

int arr[] = {8, 2, 7, 14, -5, 42};

What if we wanted to write a swap function for the
array (to swap two elements)? We can do it with
regular int variables:

void swapA(int *arr, int index_x, int index_y)
{
 int tmp = *(arr + index_x);
 *(arr + index_x) = *(arr + index_y);
 *(arr + index_y) = tmp;
}

Pointers to Arrays — Memory Footprint
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. Let's take a look at two examples.

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

For the first example, let's look at the array defined as
follows:

int arr[] = {8, 2, 7, 14, -5, 42};

What if we wanted to write a swap function for the
array (to swap two elements)? Can we do it with
memmove?

Pointers to Arrays — Memory Footprint
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. Let's take a look at two examples.

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

For the first example, let's look at the array defined as
follows:

int arr[] = {8, 2, 7, 14, -5, 42};

What if we wanted to write a swap function for the
array (to swap two elements)? Can we do it with
memmove? Sure:
void swapB(int *arr, int index_x, int index_y)
{
 int tmp;
 memmove(&tmp, arr + index_x, sizeof(int));
 memmove(arr + index_x, arr + index_y, sizeof(int));
 memmove(arr + index_y, &tmp, sizeof(int));
}

Pointers to Arrays — Memory Footprint

Address Value

0x7ffeea3c9498
42

0x7ffeea3c9494
-5

0x7ffeea3c9490
14

0x7ffeea3c948c
7

0x7ffeea3c9488
2

0x7ffeea3c9484
8

arrptr
0x7ffeea3c9484

What if we wanted to write a swap function for the
array (to swap two elements)? Can we do it with
memove? Sure:
void swapB(int *arr, int index_x, int index_y)
{
 int tmp;
 memmove(&tmp, arr + index_x, sizeof(int));
 memmove(arr + index_x, arr + index_y, sizeof(int));
 memmove(arr + index_y, &tmp, sizeof(int));
}

This works because we know the size of the
elements in the array (they are ints)

As long as we know the size of the elements,
we can always swap (or compare, or
whatever) two elements in an array!

Pointers to Arrays — Memory Footprint
Full example:

// file: pointer_to_array1.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

void swapA(int *arr, int index_x, int index_y)
{
 int tmp = *(arr + index_x);
 *(arr + index_x) = *(arr + index_y);
 *(arr + index_y) = tmp;
}

void swapB(int *arr, int index_x, int index_y)
{
 int tmp;
 memmove(&tmp, arr + index_x, sizeof(int));
 memmove(arr + index_x, arr + index_y, sizeof(int));
 memmove(arr + index_y, &tmp, sizeof(int));
}

int main(int argc, char **argv)
{
 int arr[] = {8, 2, 7, 14, -5, 42};
 swapA(arr, 0, 5); // swaps 8 and 42
 swapB(arr, 1, 2); // swaps 2 and 7
 int nelems = sizeof(arr) / sizeof(arr[0]);
 for (int i = 0; i < nelems; i++) {
 printf("%d", arr[i]);
 i == nelems - 1 ? printf("\n") : printf(", ");
 }
 return 0;
}

$./pointer_to_array1
42, 7, 2, 14, -5, 8

Pointers to Arrays — Memory Footprint
For our second example, let's look at argv, which is an array of char * pointers:

argv

0x100

Address Value

0x128
0xf89f

0x120
0xf898

0x118
0xf891

0x110
0xf887

0x108
0xf881

0x100
0xf838

0xf881 a p p l e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

6

0xf838 s w a p w o r d s \0

./swapwords apple banana orange peach pear

Can we write a function to swap two
pointers in the array?

Pointers to Arrays — Memory Footprint
For our second example, let's look at argv, which is an array of char * pointers:

./swapwords apple banana orange peach pear

Can we write a function to swap two
pointers in the array? Sure:
void swapA(char **arr, int index_x, int index_y)
{
 char *tmp = *(arr + index_x);
 *(arr + index_x) = *(arr + index_y);
 *(arr + index_y) = tmp;
}

Note (very important!) -- Only the
pointers are getting swapped!
We are not copying the text from
each string, at all. For all we
know, the strings might be any
type!

argv

0x100

Address Value

0x128
0xf89f

0x120
0xf898

0x118
0xf891

0x110
0xf887

0x108
0xf881

0x100
0xf838

0xf881 a p p l e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

6

0xf838 s w a p w o r d s \0

Pointers to Arrays — Memory Footprint
For our second example, let's look at argv, which is an array of char * pointers:

./swapwords apple banana orange peach pear

Can we write a function to swap two
pointers in the array using memove?

argv

0x100

Address Value

0x128
0xf89f

0x120
0xf898

0x118
0xf891

0x110
0xf887

0x108
0xf881

0x100
0xf838

0xf881 a p p l e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

6

0xf838 s w a p w o r d s \0

Pointers to Arrays — Memory Footprint
For our second example, let's look at argv, which is an array of char * pointers:

./swapwords apple banana orange peach pear

Can we write a function to swap two
pointers in the array using memove?
void swapB(char **arr, int index_x, int index_y)
{
 char *tmp;
 memmove(&tmp, arr + index_x, sizeof(char *));
 memmove(arr + index_x, arr + index_y, sizeof(char *));
 memmove(arr + index_y, &tmp, sizeof(char *));
}

argv

0x100

Address Value

0x128
0xf89f

0x120
0xf898

0x118
0xf891

0x110
0xf887

0x108
0xf881

0x100
0xf838

0xf881 a p p l e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

6

0xf838 s w a p w o r d s \0
In this case, we need to move 8 bytes
at a time, and we conveniently get
that value using sizeof().

Pointers to Arrays — Memory Footprint
Full example:

// file: swapwords.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

void swapA(char **arr, int index_x, int index_y)
{
 char *tmp = *(arr + index_x);
 *(arr + index_x) = *(arr + index_y);
 *(arr + index_y) = tmp;
}

void swapB(char **arr, int index_x, int index_y)
{
 char *tmp;
 memmove(&tmp, arr + index_x, sizeof(char *));
 memmove(arr + index_x, arr + index_y, sizeof(char *));
 memmove(arr + index_y, &tmp, sizeof(char *));
}

int main(int argc, char **argv)
{
 if (argc < 6) {
 printf("Usage:\n\t%s s1 s2 s3 s4 s5\n",argv[0]);
 return -1;
 }
 // assume:
 // ./swapwords apple banana orange peach pear
 swapA(argv, 1, 5); // swaps apple and pear
 swapB(argv, 2, 3); // swaps banana and orange
 for (int i = 1; i < argc; i++) { // skip progname
 printf("%s",argv[i]);
 i == argc - 1 ? printf("\n") : printf(", ");
 }
 return 0;
}

$./swapwords apple banana orange peach pear
pear, orange, banana, peach, apple

Pointers to Arrays — Memory Footprint
You might be asking -- why would we ever want to use the memmove function, if
we already know the type?

Ah -- this is a key insight that we will discuss soon! When we get to "void *"
pointers, we will find out that there is no way to do this without memmove, and
we will actually need information about the width of the type itself!

Preview: void swap_generic(void *arr, int index_x, int index_y, int width)
{
 char tmp[width];
 void *x_loc = (char *)arr + index_x * width;
 void *y_loc = (char *)arr + index_y * width;

 memmove(tmp, x_loc, width);
 memmove(x_loc, y_loc, width);
 memmove(y_loc, tmp, width);
}

Double pointers — why are they needed?

#include<stdio.h>
#include<stdlib.h>

// print the next character in p
// and update the local pointer, p (which does nothing)
char nextCharA(char *p) {
 char next = p[0];
 p++; // this does not do anything except inside this function
 // and, we are returning here, so it really doesn't
 // do anything productive
 return next;
}

// print the next character in the string pointed to by p
// and update the string pointer by one to go to the next character
char nextCharB(char **p) {
 char next = (*p)[0];
 (*p)++; // now the original pointer gets updated!
 // we return here, but the calling function has the
 // details it needs for the next call
 return next;
}

int main() {
 char *myString = "hello";
 char *pA = myString;
 char *pB = myString;

 for (int i = 0; i < 5; i++) {
 printf("nextCharA(pA): %c ", nextCharA(pA));
 printf("nextCharB(&pB): %c\n",
nextCharB(&pB));
 }
 return 0;
}

Let's take an in-depth look at the following example:

14

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

With arrays:
1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

15

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

envp

With arrays:
1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

6a48
16

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70

0x6a68

0x6a60

0x6a58

0x6a50

0x6a48

envp

With arrays:
1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

6a48
17

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp

With arrays:
1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

6a48
18

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

With arrays:
1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

6a48
19

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

With arrays:
1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

2. If you know the type that is held in the
array, you can always dereference to get a
single pointer to the type. E.g., envp[0]
is a pointer to the string
"XDG_SESSION_ID=3230"

6a48

What is the value of
envp[2] for the
diagram?

20

What is the value of
envp[2] for the
diagram?

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp
6a48

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

0x7d31

With arrays:
1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

2. If you know the type that is held in the
array, you can always dereference to get a
single pointer to the type. E.g., envp[0]
is a pointer to the string
"XDG_SESSION_ID=3230"

21

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp
6a48

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

What type is envp[2]?

With arrays:
1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

2. If you know the type that is held in the
array, you can always dereference to get a
single pointer to the type. E.g., envp[0]
is a pointer to the string
"XDG_SESSION_ID=3230"

22

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp
6a48

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

char *

With arrays:
1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

2. If you know the type that is held in the
array, you can always dereference to get a
single pointer to the type. E.g., envp[0]
is a pointer to the string
"XDG_SESSION_ID=3230"

What type is envp[2]?

23

Pointers to Arrays — char *envp[]

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp
6a48

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

Note: envp is a weird array in that
it is null-terminated! Very, very few
arrays have this property in C.

Most arrays are passed with
another variable that gives their
length. For example, we have argv
and argc.*

*Note: argv[argc] is defined to be
NULL, but that still an anomaly for C

arrays in general. 24

References and Advanced Reading

•References:
•K&R C Programming (from our course)
•Course Reader, C Primer
•Awesome C book: http://books.goalkicker.com/CBook

•Advanced Reading:
•https://www.cs.bu.edu/teaching/cpp/string/array-vs-ptr/
•https://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays

http://books.goalkicker.com/CBook
https://www.cs.bu.edu/teaching/cpp/string/array-vs-ptr/
https://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays

