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CS107, Lecture 10
Introduction to Assembly

Reading: B&O 3.1-3.4



Attendance
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What is Assembly Code?

• Computers execute "machine code," which is a
sequence of bytes that encode low-level operations for
manipulating data, managing memory, read and write
from storage, and communicate with networks.

• The "assembly code" for a computer is a textual 
representation of the machine code giving the
individual instructions to the underlying machine.
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What is Assembly Code?
•

•

gcc generates assembly code from C code
Assembly is raw — there is no type checking, and the 
instructions are simple. It is unique to the type of 
processor (e.g., the assembly for your computer cannot 
run on your phone)
Humans can write assembly (and, in fact, in the early days 
of computing they had to write assembly), but it is more 
productive to be able to read and understand what the 
compiler produces, than to write it by hand.
gcc is almost always going to produce better optimized
code than a human could, and understanding what the 
compiler produces is important.

•

•
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x86 Assembly

• The Intel-based computers we use are direct descendants of
Intel's 16-bit, 1978 processor with the name 8086.

• Intel has taken a strict backwards-compatibility approach to new
processors, and their 32- and 64-bit processors have built upon
the original 8086 Assembly code.

• These days, when we learn x86 assembly code, we have to keep
this history in mind. Naming of "registers," for example, has
historical roots, so bear with it.
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Machine-Level Code

• Before we look at some assembly code, let's talk about 
some things that have been hidden from us when writing 
C code.
Machine code is based on the "instruction set 
architecture" (ISA), which defines the behavior and layout 
of the system. Behavior is defined as if instructions are 
run one after the other, and memory appears as a very 
large byte array.

•
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Machine-Level Code

• New things that have been hidden:
• The program counter (PC), called "%rip" indicates the address of the next 

instruction ("r"egister "i"nstruction "p"ointer". We cannot modify this directly. 
The "register file" contains 16 named locations that store 64-bit values.
Registers are the fastest memory on your computer. They are not in main 
memory, and do not have addresses. You cannot pass a pointer to a
register, but a pointer may hold a register as its value.

•

• Registers can hold addresses, or integer data. Some registers are used to 
keep track of your program's state, and others hold temporary data.
Registers are used for arithmetic, local variables, and return values for 
functions.

•

• The condition code registers hold status information about the most recently
executed arithmetic or logical instruction. These are used to control program 
flow — e.g., if the result of an addition is negative, exit a loop.
There are vector registers, which hold integer or floating point values.•
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Machine-Level Code

• Unlike C, there is no model of different data types, and memory is simply a large, 
byte-addressable array.

• There is no distinction between signed and unsigned integers, between different 
types of pointers, or even between pointers and integers.

• A single machine instruction performs only a very elementary operation. For 
example:
• there is an instruction to add two numbers in registers. That's all the instruction 

does.
there is an instruction that transfers data between a register and memory. 
there is an instruction that conditionally branches to a new instruction address.

•

•

• Often, one C statement generates multiple assembly code instructions.



Learning Goals
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• Learn what assembly language is and why it is important
• Become familiar with the format of human-readable assembly and x86
• Learn the mov instruction and how data moves around at the assembly level



Lecture Plan

• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction
• Live Session
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Bits all the way down
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Data representation so far
• Integer (unsigned int, 2’s complement signed int)
• char (ASCII)
• Address (unsigned long)
• Aggregates (arrays, structs)

The code itself is binary too!
• Instructions (machine encoding)



GCC
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• GCC is the compiler that converts your human-readable code into machine-
readable instructions.

• C, and other languages, are high-level abstractions we use to write code 
efficiently. But computers don’t really understand things like data structures, 
variable types, etc. Compilers are the translator!

• Pure machine code is 1s and 0s – everything is bits, even your programs! But
we can read it in a human-readable form called assembly. (Engineers used to
write code in assembly before C).

• There may be multiple assembly instructions needed to encode a single C 
instruction.

• We’re going to go behind the curtain to see what the assembly code for our 
programs looks like.



Lecture Plan
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• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction
• Live Session
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Examining the Assembly

objdump -d



Our First Assembly
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0;=sumint
{i++)nelems;<i0;=i(intfor

int sum_array(int arr[], int nelems) {

sum += arr[i];
}
return sum;

}

What does this look like in assembly?



Our First Assembly
int sum_array(int arr[], int nelems) { 

int sum = 0;
for (int i = 0; i < nelems; i++) { 

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
$0x0,%eaxmov00000000b8401136:
$0x0,%edx
%esi,%eax

mov
cmp

00000000
f0

ba
39

40113b:
401140:

40114f <sum_array+0x19>jge0b7d401142:
%eax,%rcxmovslqc86348401144:
(%rdi,%rcx,4),%edxadd8f1403401147:
$0x1,%eax
401140 <sum_array+0xa>

add
jmp

01c0
f1

83
eb

40114a:
40114d:

%edx,%eaxmovd08940114f:
retqc3401151:

make
objdump -d sum
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Our First Assembly
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<sum_array>:0000000000401136
$0x0,%eaxmov00000000b8401136:
$0x0,%edxmov00000000ba40113b:
%esi,%eax
40114f <sum_array+0x19>

cmp
jge

f0
0b

39
7d

401140:
401142:

%eax,%rcxmovslqc86348401144:
(%rdi,%rcx,4),%edxadd8f1403401147:
$0x1,%eaxadd01c08340114a:

<sum_array+0xa>401140jmpf1eb40114d:
%edx,%eaxmovd08940114f:

retqc3401151:



Our First Assembly

0000000000401136 <sum_array>:
$0x0,%eaxmov00000000b8401136:
$0x0,%edxmov00000000ba40113b:

p 
e

%esi,%eax
40114f <sum_array+0x19>

vslq %eax,%rcx
d

401140: 39 f0 cm
401142: 7d 0b jg
401144: 48 63 c8 mo
401147: 03 14 8f ad (%rdi,%rcx,4),%edx

$0x1,%eax
401140 <sum_array+0xa>
%edx,%eax

40114a:
40114d:
40114f:
401151:

83 c0 01
eb f1
89 d0
c3

add
jmp
mov
retq

This is the name of the function (same 
as C) and the memory address where 
the code for this function starts.
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Our First Assembly

0000000000401136 <sum_array>:
$0x0,%eaxmov00000000b8401136:
$0x0,%edxmov00000000ba40113b:

_array+0x19>

4),%edx

f0 cmp %esi,%eax
0b jge 40114f <sum
63 c8 movslq %eax,%rcx
14 8f add (%rdi,%rcx,
c0 01 add $0x1,%eax

401140 <sum_array+0xa>
%edx,%eax

401140: 39
401142: 7d
401144: 48
401147: 03
40114a: 83
40114d: eb f1 
40114f: 89 d0
401151: c3

jmp
mov
retq

These are the memory addresses where
each of the instructions live. Sequential
instructions are sequential in memory.
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Our First Assembly

0000000000401136 <sum_array>:
$0x0,%eaxmov00000000b8401136:
$0x0,%edxmov00000000ba40113b:

cmp 
jge

401140: 39 f0
401142: 7d 0b
401144: 48 63 c8
401147: 03 14 8f
40114a: 83 c0 01

%esi,%eax
40114f <sum_array+0x19> 

movslq %eax,%rcx
(%rdi,%rcx,4),%edx
$0x1,%eax
401140 <sum_array+0xa>
%edx,%eax

40114d: eb f1 
40114f: 89 d0
401151: c3

add
add
jmp
mov
retq

This is the assembly code: 
“human-readable” versions of 
each machine code instruction.
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Our First Assembly

0000000000401136 <sum_array>:

j

ov $0x0,%edx
mp %esi,%eax
ge 40114f <sum_array+0x19> 
ovslq %eax,%rcx
dd (%rdi,%rcx,4),%edx
dd $0x1,%eax
mp 401140 <sum_array+0xa>

$0x0,%eaxmov00000000b8401136:
is the machine code: ramThis00000000ba40113b:

decimal instructions,chexaf0
0b

39
7d

401140:
401142:

mrepresenting binary as readc86348401144:
acomputer. Different instruct8f1403401147:

w

by the 
ions may

abe different byte lengths.
j

c0 01
f1

83
eb

40114a:
40114d:

%edx,%eaxmov
retq

d089
c3

40114f:
401151:

22



Our First Assembly
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<sum_array>:0000000000401136
$0x0,%eaxmov00000000b8401136:
$0x0,%edxmov00000000ba40113b:
%esi,%eax
40114f <sum_array+0x19>

cmp
jge

f0
0b

39
7d

401140:
401142:

%eax,%rcxmovslqc86348401144:
(%rdi,%rcx,4),%edxadd8f1403401147:
$0x1,%eaxadd01c08340114a:

<sum_array+0xa>401140jmpf1eb40114d:
%edx,%eaxmovd08940114f:

retqc3401151:



Our First Assembly

<sum_array>:0000000000401136
$0x0,%eaxmov00000000b8401136:
$0x0,%edxmov00000000ba40113b:
%esi,%eax
40114f <sum_array+0x19>

cmp
jge

f0
0b

39
7d

401140:
401142:

%eax,%rcxmovslqc86348401144:
(%rdi,%rcx,4),%edxadd8f1403401147:
$0x1,%eaxadd01c08340114a:

<sum_array+0xa>401140jmpf1eb40114d:
%edx,%eaxmovd08940114f:

retqc3401151:

Each instruction has an 
operation name (“opcode”).
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Our First Assembly

0000000000401136 <sum_array>:
401136:
40113b:
401140:
401142:
401144:
401147:
40114a:
40114d:
40114f:
401151:

b8 00 00 00 00
ba 00 00 00 00
39 f0
7d 0b
48 63 c8
03 14 8f
83 c0 01
eb f1
89 d0
c3

mov
mov
cmp
jge

$0x0,%eax
$0x0,%edx
%esi,%eax
40114f <sum_array+0x19>

movslq %eax,%rcx
add
add
jmp

(%rdi,%rcx,4),%edx
$0x1,%eax
401140 <sum_array+0xa>

mov %edx,%eax
retqEach instruction can also have 

arguments (“operands”).

25



Our First Assembly

<sum_array>:0000000000401136
$0x0,%eaxmov00000000b8401136:
$0x0,%edxmov00000000ba40113b:
%esi,%eax
40114f <sum_array+0x19>

cmp
jge

f0
0b

39
7d

401140:
401142:

%eax,%rcxmovslqc86348401144:
(%rdi,%rcx,4),%edxadd8f1403401147:
$0x1,%eaxadd01c08340114a:

<sum_array+0xa>401140jmpf1eb40114d:
%edx,%eaxmovd08940114f:

retqc3401151:

$[number] means a constant value, 
or “immediate” (e.g. 1 here).
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Our First Assembly

0000000000401136 <sum_array>:
401136:
40113b:
401140:
401142:
401144:
401147:
40114a:
40114d:
40114f:
401151:

b8 00 00 00 00
ba 00 00 00 00
39 f0
7d 0b
48 63 c8
03 14 8f
83 c0 01
eb f1
89 d0
c3

mov
mov
cmp
jge

$0x0,%eax
$0x0,%edx
%esi,%eax
40114f <sum_array+0x19>

movslq %eax,%rcx
(%rdi,%rcx,4),%edx
$0x1,%eax
401140 <sum_array+0xa>
%edx,%eax

add
add
jmp
mov
retq

%[name] means a register, a storage 
location on the CPU (e.g. edx here).

27



Lecture Plan
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• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov instruction



Assembly Abstraction
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• C abstracts away the low-level details of machine code. It lets us work using 
variables, variable types, and other higher-level abstractions.

• C and other languages let us write code that works on most machines.
• Assembly code is just bytes! No variable types, no type checking, etc.
• Assembly/machine code is processor-specific.
• What is the level of abstraction for assembly code?



Registers

%rax

30



Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15
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Registers

What is a register?

A register is a fast read/write memory 
slot right on the CPU that can hold 

variable values.
Registers are not located in memory.

32



Registers
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• A register is a 64-bit space inside the processor.
• There are 16 registers available, each with a unique name.
• Registers are like “scratch paper” for the processor. Data being calculated or 

manipulated is moved to registers first. Operations are performed on 
registers.

• Registers also hold parameters and return values for functions.
• Registers are extremely fast memory!
• Processor instructions consist mostly of moving data into/out of registers and 

performing arithmetic on them. This is the level of logic your program must be 
in to execute!



Machine-Level Code
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Assembly instructions manipulate these registers. For example:
• One instruction adds two numbers in registers
• One instruction transfers data from a register to memory
• One instruction transfers data from memory to a register



Computer architecture

memory needed 
for program 
execution
(stack, heap, etc.)
accessed by address

35

registers accessed
by name

ALU is main 
workhorse of CPU

disk/server stores program 
when not executing



GCC And Assembly

• GCC compiles your program – it lays out memory on the stack and heap and 
generates assembly instructions to access and do calculations on those 
memory locations.

• Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

36

int sum = x + y; 1) Copy x into register 1
2) Copy y into register 2
3) Add register 2 to register 1
4) Write register 1 to memory for sum



Assembly

• We are going to learn the x86-64 instruction set architecture. This instruction 
set is used by Intel and AMD processors.

• There are many other instruction sets: ARM, MIPS, etc.

37



Instruction set architecture (ISA)

A contract between program/compiler and hardware:
• Defines operations that the processor (CPU) can execute
• Data read/write/transfer operations
• Control mechanisms

Intel originally designed their instruction set back in 1978.
• Legacy support is a huge issue for x86-64
• Originally 16-bit processor, then 32 bit, now 64 bit. 

These design choices dictated the register sizes 
(and even register/instruction names).

Application program

OSCompiler

ISA

CPU design

Circuit design

Chip layout

38



Lecture Plan
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• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction
• Live Session



mov
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The mov instruction copies bytes from one place to another; 
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

$0x104

%rbx 

0x6005c0Direct address



Operand Forms: Immediate

mov $0x104,

Copy the value 
0x104 into some 

destination.

41



Operand Forms: Registers

mov %rbx,

mov ,%rbx

Copy the value in
register %rbx into
some destination.

Copy the value 
from some source 
into register %rbx.

42



Operand Forms: Absolute Addresses

mov 0x104,

mov

Copy the value at 
address 0x104 into 
some destination.

,0x104
Copy the value 

from some source 
into the memory at 

address 0x104. 43



Practice #1: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value 5 is stored at address 0x42, and the value 8
is stored in %rbx.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

44



Operand Forms: Indirect

mov (%rbx),

mov ,(%rbx)

Copy the value at the 
address stored in register

%rbx into some destination.

Copy the value from some source 
into the memory at the address 

stored in register %rbx. 45



Operand Forms: Base + Displacement

mov 0x10(%rax),

mov ,0x10(%rax)

Copy the value at the 
address (0x10 plus what is 
stored in register %rax) into 

some destination.

Copy the value from some source 
into the memory at the address (0x10
plus what is stored in register %rax). 46



Operand Forms: Indexed

mov

mov ,(%rax,%rdx)

Copy the value at the address which is 
(the sum of the values in registers %rax 

and %rdx) into some destination.

(%rax,%rdx),

Copy the value from some source into the 
memory at the address which is (the sum of 

the values in registers %rax and %rdx). 47



Operand Forms: Indexed

mov

mov ,0x10(%rax,%rdx)

Copy the value at the address which is (the 
sum of 0x10 plus the values in registers
%rax and %rdx) into some destination.

0x10(%rax,%rdx),

Copy the value from some source into the 
memory at the address which is (the sum of 0x10

plus the values in registers %rax and %rdx). 48



Practice #2: Operand Forms

What are the results of the following move instructions (executed separately)? 
For this problem, assume the value 0x11 is stored at address 0x10C, 0xAB is 
stored at address 0x104, 0x100 is stored in register %rax and 0x3 is stored in
%rdx.

1. mov
2. mov
3. mov

$0x42,(%rax) 
4(%rax),%rcx 
9(%rax,%rdx),%rcx

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Displacement: positive or 
negative constant (if missing, = 0)

Base: register 
(if missing, = 0)

Index: register
(if missing, = 0) 49



Operand Forms: Scaled Indexed

mov (,%rdx,4),

mov ,(,%rdx,4)

Copy the value at the address which 
is (4 times the value in register

%rdx) into some destination.

Copy the value from some source into the 
memory at the address which is (4 times

the value in register %rdx).

The scaling factor 
(e.g. 4 here) must 
be hardcoded to 
be either 1, 2, 4
or 8.

50



Operand Forms: Scaled Indexed

mov 0x4(,%rdx,4),

mov ,0x4(,%rdx,4)

Copy the value at the address which is 
(4 times the value in register %rdx, plus

0x4), into some destination.

Copy the value from some source into the 
memory at the address which is (4 times

the value in register %rdx, plus 0x4). 51



Operand Forms: Scaled Indexed

mov (%rax,%rdx,2),

mov ,(%rax,%rdx,2)

Copy the value at the address which is (the
value in register %rax plus 2 times the value in 

register %rdx) into some destination.

Copy the value from some source into the memory at 
the address which is (the value in register %rax

plus 2 times the value in register %rdx). 52



Operand Forms: Scaled Indexed

mov 0x4(%rax,%rdx,2),

mov ,0x4(%rax,%rdx,2)

Copy the value at the address which is (0x4 plus the 
value in register %rax plus 2 times the value in 

register %rdx) into some destination.

Copy the value from some source into the memory at 
the address which is (0x4 plus the value in register

%rax plus 2 times the value in register %rdx). 53



Most General Operand Form
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Imm(rb,ri,s)

is equivalent to…

Imm + R[rb] + R[ri]*s



Most General Operand Form

Imm(rb, ri, s) is equivalent to 
address Imm + R[rb] + R[ri]*s

Displacement: 
pos/neg constant 
(if missing, = 0)

Index: register 
(if missing, = 0)

Scale must be 
1,2,4, or 8
(if missing, = 1)

Base: register (if 
missing, = 0)
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Operand Forms
NameOperand ValueFormType

Immediate𝐼𝑚𝑚$𝐼𝑚𝑚Immediate

RegisterR[𝑟!]𝑟!Register

AbsoluteM[𝐼𝑚𝑚]𝐼𝑚𝑚Memory

IndirectM[R 𝑟! ](𝑟!)Memory

Base + displacementM[𝐼𝑚𝑚 + R 𝑟" ]𝐼𝑚𝑚(𝑟")Memory

IndexedM[R 𝑟" + R 𝑟# ](𝑟", 𝑟#)Memory

IndexedM[𝐼𝑚𝑚 + R 𝑟" + R 𝑟# ]𝐼𝑚𝑚(𝑟", 𝑟#)Memory

Scaled indexedM[R 𝑟# . 𝑠](, 𝑟#, 𝑠)Memory

Scaled indexedM[𝐼𝑚𝑚 + R 𝑟# . 𝑠]𝐼𝑚𝑚(, 𝑟#, 𝑠)Memory

Scaled indexedM[R 𝑟" + R 𝑟# . 𝑠](𝑟", 𝑟#, 𝑠)Memory

Scaled indexed. 𝑠]M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟#𝐼𝑚𝑚(𝑟", 𝑟#, 𝑠)Memory

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values, 
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”
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Practice #3: Operand Forms

What are the results of the following move instructions (executed separately)? 
For this problem, assume the value 0x1 is stored in register %rcx, the value 
0x100 is stored in register %rax, the value 0x3 is stored in register %rdx, and 
value 0x11 is stored at address 0x10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx
Imm(rb, ri, s) is equivalent to 
address Imm + R[rb] + R[ri]*s

57

Displacement Base Index Scale
(1,2,4,8)



Goals of indirect addressing: C

58

Why are there so many forms of 
indirect addressing?

We see these indirect addressing 
paradigms in C as well!



Our First Assembly
int sum_array(int arr[], int nelems) { 

int sum = 0;
for (int i = 0; i < nelems; i++) { 

sum += arr[i];
}
return sum;

}

00000000004005b6 <sum_array>:
$0x0,%edxmov00000000ba4005b6:
$0x0,%eaxmov00000000b84005bb:
4005cb <sum_array+0x15>jmp09eb4005c0:
%edx,%rcxmovslqca63484005c2:
(%rdi,%rcx,4),%eaxadd8f04034005c5:

4005c8: 83 c2 01 add
cmp
jl

$0x1,%edx
%esi,%edx
4005c2 <sum_array+0xc>

4005cb: 39 f2
4005cd: 7c f3
4005cf: f3 c3 repz retq

We’re 1/4th of the way to understanding assembly!
What looks understandable right now?
Some notes:
• Registers store addresses and values
• mov src, dst copies value into dst
• sizeof(int) is 4
• Instructions executed sequentially

We’ll come back to this 
example in future lectures!
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Central Processing Units (CPUs)

Intel 8086, 16-bit 
microprocessor 
($86.65, 1978)

60

Raspberry Pi BCM2836
32-bit ARM microprocessor 
($35 for everything, 2015)

Intel Core i9-9900K 64-bit 
8-core multi-core processor 
($449, 2018)



Assembly code in movies

Trinity saving the world by 
hacking into the power grid 
using Nmap Network 
Scanning
The Matrix Reloaded, 2003
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Keep a resource guide handy

• https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf
• B&O book:

• Canvas -> Files
-> Bryant_OHallaron_ch3.1-3.8.pdf

• It’s like study abroad:
• You took LANG 1A
• Your tools give too much/too little information 

(a book reference, a rudimentary translator)
• No one expects you to speak the language 

fluently…
• …But the more you internalize,

the better you can use tools to read the language
Chapter 3, Figures 3.2-3.3 (p. 180-181)



Why are we reading assembly?

• We will not be writing assembly! (that’s the compiler’s job)
• Rather, we want to translate the assembly back into our C code.
• Knowing how our C code is converted into machine instructions gives us 

insight into how to write more efficient, cleaner code.

Programmer-
generated

Main goal: Information retrieval

C codeidea
Assembly 

code Machine code

gcc (compiler+assembler) 
generated
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Extended warmup: Information Synthesis

Spend a few minutes thinking about the main paradigms of the mov instruction.
• What might be the equivalent C-like operation?
• Examples (note %r registers are 64-bit):
1. mov
2. mov
3. mov
4. mov

$0x0,%rdx
%rdx,%rcx
$0x42,(%rdi) 
(%rax,%rcx,8),%rax

64



Extended warmup: Information Synthesis

Spend a few minutes thinking about the main paradigms of the mov instruction.
• What might be the equivalent C-like operation?
• Examples (note %r registers are 64-bit):

$0x0,%rdx -> maybe long x = 0
%rdx,%rcx -> maybe long x = y;
$0x42,(%rdi) -> maybe *ptr = 0x42;

1. mov
2. mov
3. mov
4. mov (%rax,%rcx,8),%rax -> maybe long x = arr[i];

Indirect addressing 
is like pointer 
arithmetic/deref!
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Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x = ...
int *ptr = malloc(…);
...

??? = _???_;

mov %ecx,(%rax)

1. Extra Practice

<val of x>

%ecx

(Pedantic: You should sub in
<x> and <ptr> with actual
values, like 4 and 0x7fff80)

<val of ptr>
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Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x = ...
int *ptr = malloc(…);
...

??? = _???_;

mov %ecx,(%rax)

1. Extra Practice

<val of x> <val of ptr>

*ptr = x;

%ecx %rax
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Fill in the blank to complete the C code that

long arr[5];
...
long num = ??? ;

1. generates this assembly
2. results in this register layout

mov (%rdi, %rcx, 8),%rax

2. Extra Practice

3
%rcx

<val of num>

%rax

<val of arr>

%rdi
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Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long arr[5];
...
long num = ??? ;

mov (%rdi, %rcx, 8),%rax

2. Extra Practice

long num = arr[3]; 
long num = *(arr + 3); 
long num = *(arr + y);

(assume long y = 3;
declared earlier)

3
%rcx

<val of num>

%rax

<val of arr>

%rdi
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Fill in the blank to complete the C code that

char str[5];
...

??? = 'c';

1. generates this assembly
2. has this register layout

mov $0x63,(%rcx,%rdx,1)

3. Extra Practice

2
%rdx

<val of str>

%rcx
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Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char str[5];
...

??? = 'c';

mov $0x63,(%rcx,%rdx,1)

3. Extra Practice

str[2] = 'c';
*(str + 2) = 'c';

2
%rdx

<val of str>

%rcx
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Coming Up Soon To A Slide Near You

• The below code is the objdump of a C function, foo.
• foo keeps its 1st and 2nd parameters are in registers %rdi and %rsi, respectively.

(%rdi),%raxmov<foo>0x4005b6
(%rsi),%rdxmov<foo+3>0x4005b9
%rdx,(%rdi)mov<foo+6>0x4005bc
%rax,(%rsi)mov<foo+9>0x4005bf

0x7fffe868

%rdi

0x7fffe870

%rsi

42

1000
0x7fffe870 

0x7fffe868
8 bytes

%rax %rdx

1. What does this function do?
2. What C code could have 

generated this assembly?
(Hints: make up C variable names as 
needed, assume all regs 64-bit)
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Coming Up Soon To A Slide Near You

• The below code is the objdump of a C function, foo.
• foo keeps its 1st and 2nd parameters are in registers %rdi and %rsi, respectively.

(%rdi),%raxmov<foo>0x4005b6
(%rsi),%rdxmov<foo+3>0x4005b9
%rdx,(%rdi)mov<foo+6>0x4005bc
%rax,(%rsi)mov<foo+9>0x4005bf

0x7fffe868

%rdi

0x7fffe870

%rsi

42

1000
0x7fffe870 

0x7fffe868
8 bytes

%rax %rdx
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void foo(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}



Lecture Plan

• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet:
https://web.stanford.edu/class/archive/cs/cs107/cs107.1248/guide/x86-64.html

See more guides on Resources page of course website!
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mov

The mov instruction copies bytes from one place to another; 
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

75



Memory Location Syntax
MeaningSyntax

Address 0x104 (no $)0x104

What’s in %rax(%rax)

What’s in %rax, plus 44(%rax)

Sum of what’s in %rax and %rdx(%rax, %rdx)

Sum of values in %rax and %rdx, plus 44(%rax, %rdx)

What’s in %rcx, times 4 (multiplier can be 1, 2, 4, 8)(, %rcx, 4)

What’s in %rax, plus 2 times what’s in %rcx(%rax, %rcx, 2)

What’s in %rax, plus 2 times what’s in %rcx,
plus 88(%rax, %rcx, 2)
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Operand Forms
NameOperand ValueFormType

Immediate𝐼𝑚𝑚$𝐼𝑚𝑚Immediate

RegisterR[𝑟!]𝑟!Register

AbsoluteM[𝐼𝑚𝑚]𝐼𝑚𝑚Memory

IndirectM[R 𝑟! ](𝑟!)Memory

Base + displacementM[𝐼𝑚𝑚 + R 𝑟" ]𝐼𝑚𝑚(𝑟")Memory

IndexedM[R 𝑟" + R 𝑟# ](𝑟", 𝑟#)Memory

IndexedM[𝐼𝑚𝑚 + R 𝑟" + R 𝑟# ]𝐼𝑚𝑚(𝑟", 𝑟#)Memory

Scaled indexedM[R 𝑟# . 𝑠](, 𝑟#, 𝑠)Memory

Scaled indexedM[𝐼𝑚𝑚 + R 𝑟# . 𝑠]𝐼𝑚𝑚(, 𝑟#, 𝑠)Memory

Scaled indexedM[R 𝑟" + R 𝑟# . 𝑠](𝑟", 𝑟#, 𝑠)Memory

Scaled indexed. 𝑠]M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟#𝐼𝑚𝑚(𝑟", 𝑟#, 𝑠)Memory

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values, 
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.” 77



Lecture Plan

• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

78

Reference Sheet:
https://web.stanford.edu/class/archive/cs/cs107/cs107.1248/guide/x86-64.html

See more guides on Resources page of course website!



Data Sizes

Data sizes in assembly have slightly different terminology to get used to:
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:
• b means byte
• w means word
• l means double word
• q means quad word 79



Register Sizes
63Bit: 071531

%al%ax%eax%rax

%bl%bx%ebx%rbx

%cl%cx%ecx%rcx

%dl%dx%edx%rdx

%sil%si%esi%rsi

%dil%di%edi%rdi
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Register Sizes
63Bit: 071531

%bpl%bp%ebp%rbp

%spl%sp%esp%rsp

%r8b%r8w%r8d%r8

%r9b%r9w%r9d%r9

%r10b%r10w%r10d%r10

%r11b%r11w%r11d%r11
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Register Sizes
63Bit: 071531

%r12b%r12w%r12d%r12

%r13b%r13w%r13d%r13

%r14b%r14w%r14d%r14

%r15b%r15w%r15d%r15
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Register Responsibilities

Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack
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Reference Sheet:
https://web.stanford.edu/class/archive/cs/cs107/cs107.1248/guide/x86-64.html

See more guides on Resources page of course website!



mov Variants

84

• mov can take an optional suffix (b,w,l,q) that specifies the size of data to move:
movb, movw, movl, movq

• mov only updates the specific register bytes or memory locations indicated.
• Exception: movl writing to a register will also set high order 4 bytes to 0.



Practice: mov And Data Sizes

85

For each of the following mov instructions, determine the appropriate suffix 
based on the operands (e.g. movb, movw, movl or movq).

1. mov %eax, (%rsp)
2. mov (%rax), %dx
3. mov $0xff, %bl
4. mov (%rsp,%rdx,4),%dl
5. mov (%rdx), %rax
6. mov %dx, (%rax)



Practice: mov And Data Sizes
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For each of the following mov instructions, determine the appropriate suffix 
based on the operands (e.g. movb, movw, movl or movq).

1. movl %eax, (%rsp)
2. movw (%rax), %dx
3. movb $0xff, %bl
4. movb (%rsp,%rdx,4),%dl
5. movq (%rdx), %rax
6. movw %dx, (%rax)



mov

87

• The movabsq instruction is used to write a 64-bit Immediate (constant) value.
• The regular movq instruction can only take 32-bit immediates.
• 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax



movz and movs

88

• There are two mov instructions that can be used to copy a smaller source to a 
larger destination: movz and movs.

• movz fills the remaining bytes with zeros
• movs fills the remaining bytes by sign-extending the most significant bit in the 

source.
• The source must be from memory or a register, and the destination is a 

register.



movz and movs

89

DescriptionInstruction

Move zero-extended byte to wordmovzbw

Move zero-extended byte to double wordmovzbl

Move zero-extended word to double wordmovzwl

Move zero-extended byte to quad wordmovzbq

Move zero-extended word to quad wordmovzwq

MOVZ S,R R ← ZeroExtend(S)



movz and movs

90

DescriptionInstruction

Move sign-extended byte to wordmovsbw

Move sign-extended byte to double wordmovsbl

Move sign-extended word to double wordmovswl

Move sign-extended byte to quad wordmovsbq

Move sign-extended word to quad wordmovswq

Move sign-extended double word to quad wordmovslq

Sign-extend %eax to %rax
%rax <- SignExtend(%eax)

cltq

MOVS S,R R ← SignExtend(S)



Lecture Plan

• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering
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Reference Sheet:
https://web.stanford.edu/class/archive/cs/cs107/cs107.1248/guide/x86-64.html

See more guides on Resources page of course website!



lea

The lea instruction copies an “effective address” from one place to another.
lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies 
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.
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lea vs. mov

93

lea Interpretationmov InterpretationOperands

Copy 6 + what’s in %rax into %rdx.Go to the address (6 + what’s in %rax), 
and copy data there into %rdx

6(%rax), %rdx



lea vs. mov

94

lea Interpretationmov InterpretationOperands

Copy 6 + what’s in %rax into %rdx.Go to the address (6 + what’s in %rax), 
and copy data there into %rdx

6(%rax), %rdx

Copy (what’s in %rax + what’s in %rcx) 
into %rdx.

Go to the address (what’s in %rax + 
what’s in %rcx) and copy data there into
%rdx

(%rax, %rcx), %rdx



lea vs. mov
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lea Interpretationmov InterpretationOperands

Copy 6 + what’s in %rax into %rdx.Go to the address (6 + what’s in %rax), 
and copy data there into %rdx

6(%rax), %rdx

Copy (what’s in %rax + what’s in %rcx) 
into %rdx.

Go to the address (what’s in %rax + 
what’s in %rcx) and copy data there into
%rdx

(%rax, %rcx), %rdx

Copy (%rax + 4 * %rcx) into %rdx.Go to the address (%rax + 4 * %rcx) and 
copy data there into %rdx.

(%rax, %rcx, 4), %rdx



lea vs. mov
lea Interpretationmov InterpretationOperands

Copy 6 + what’s in %rax into %rdx.Go to the address (6 + what’s in %rax), 
and copy data there into %rdx

6(%rax), %rdx

Copy (what’s in %rax + what’s in %rcx) 
into %rdx.

Go to the address (what’s in %rax + 
what’s in %rcx) and copy data there into
%rdx

(%rax, %rcx), %rdx

Copy (%rax + 4 * %rcx) into %rdx.Go to the address (%rax + 4 * %rcx) and 
copy data there into %rdx.

(%rax, %rcx, 4), %rdx

Copy (7 + %rax + 8 * %rax) into %rdx.Go to the address (7 + %rax + 8 * %rax) 
and copy data there into %rdx.

7(%rax, %rax, 8), %rdx

Unlike mov, which copies data at the address 
src to the destination, lea copies the value of 
src itself to the destination.
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Lecture Plan

• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering
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Reference Sheet:
https://web.stanford.edu/class/archive/cs/cs107/cs107.1248/guide/x86-64.html

See more guides on Resources page of course website!



Unary Instructions

The following instructions operate on a single operand (register or memory):

Examples:
incq 16(%rax) 
dec %rdx

not %rcx

Instruction Effect Description

IncrementD + 1←DDinc

DecrementD - 1←DDdec

Negate-D←DDneg

Complement~D←DDnot
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Binary Instructions

The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Examples:
addq %rcx,(%rax)

xorq $16,(%rax, %rdx, 8) 

subq %rdx,8(%rax)

Instruction Effect Description

AddSD +←Dadd S, D

SubtractSD -←Dsub S, D

MultiplySD *←Dimul S, D

Exclusive-orSD ^←Dxor S, D

OrSD |←Dor S, D

AndSD &←Dand S, D
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Large Multiplication

• Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64 
support this with only 64-bit registers?

• If you specify two operands to imul, it multiplies them together and truncates 
until it fits in a 64-bit register.

imul S, D D ← D * S
• If you specify one operand, it multiplies that by %rax, and splits the product 

across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64 
bits in %rax.

DescriptionEffectInstruction

Signed full multiplyR[%rdx]:R[%rax] ← S x R[%rax]imulq S

Unsigned full multiplyR[%rdx]:R[%rax] ← S x R[%rax]mulq S
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Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits 

are in %rax. The divisor is the operand to the instruction.
• The quotient is stored in %rax, and the remainder in %rdx.

DescriptionEffectInstruction

Signed dividemod S; 
S

R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

←
←

R[%rdx] 
R[%rax]

idivq S

Unsigned dividemod S; 
S

R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

←
←

R[%rdx] 
R[%rax]

divq S
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Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits 

are in %rax. The divisor is the operand to the instruction.
• Most division uses only 64-bit dividends. The cqto instruction sign-extends the 

64-bit value in %rax into %rdx to fill both registers with the dividend, as the 
division instruction expects.

DescriptionEffectInstruction

Signed dividemod S; 
S

R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

←
←

R[%rdx] 
R[%rax]

idivq S

Unsigned dividemod S; 
S

R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

←
←

R[%rdx] 
R[%rax]

divq S

Convert to oct wordR[%rdx]:R[%rax] ← SignExtend(R[%rax])cqto
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Shift Instructions

The following instructions have two operands: the shift amount k and the 
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Examples:
shll $3,(%rax)
shrl %cl,(%rax,%rdx,8) 
sarl $4,8(%rax)

Instruction Effect Description

Left shift<< kD←Dk, Dsal

Left shift (same as sal)<< kD←Dk, Dshl

Arithmetic right shift>>A kD←Dk, Dsar

Logical right shift>>L kD←Dk, Dshr
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Shift Amount

• When using %cl, the width of what you are shifting determines what portion 
of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know how 
much to shift.

• If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3 
bits, which represent 7. shlw shifts by 15 because it considers only the low-order 
log2(16) = 4 bits, which represent 15.

Instruction Effect Description

Left shift<< kD←Dk, Dsal

Left shift (same as sal)<< kD←Dk, Dshl

Arithmetic right shift>>A kD←Dk, Dsar

Logical right shift>>L kD←Dk, Dshr
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Lecture Plan

• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering
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Reference Sheet:
https://web.stanford.edu/class/archive/cs/cs107/cs107.1248/guide/x86-64.html

See more guides on Resources page of course website!



Assembly Exploration

• Let’s pull these commands together and see how some C code might be 
translated to assembly.

• Compiler Explorer is a handy website that lets you quickly write C code and see 
its assembly translation. Let’s check it out!

• https://godbolt.org/z/WPzz6G4a9
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Code Reference: add_to_first

// Returns the sum of x and the first element in
arr
int add_to_first(int x, int arr[]) {

int sum = x; 
sum += arr[0]; 
return sum;

}

add_to_first: 
movl %edi, %eax
addl (%rsi), %eax
ret
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Code Reference: full_divide

// Returns x/y, stores remainder in location stored in
remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {

long quotient = x / y;
long remainder = x % y;
*remainder_ptr = remainder;
return quotient;

}

full_divide:

ret

%rax%rdi,movq
%rcx%rdx,movq

cqto
%rsiidivq

(%rcx)%rdx,movq
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Assembly Exercise 1

000000000040116e <sum_example1>:
40116e: 8d 04 37
401171: c3

lea (%rdi,%rsi,1),%eax 
retq

Which of the following is most likely to have generated the above assembly?

// A)
void sum_example1() { 

int x;
int y;
int sum = x + y;

}

// C)
void sum_example1(int x, int y) { 

int sum = x + y;
}

// B)
int sum_example1(int x, int y) { 

return x + y;
}
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Assembly Exercise 2

0000000000401172 <sum_example2>:
0xc(%rdi),%eaxmov0c478b401172:
(%rdi),%eaxadd0703401175:
0x18(%rdi),%eaxsub

retq
18472b

c3
401177:
40117a:

int sum_example2(int arr[]) { 
int sum = 0;
sum += arr[0];
sum += arr[3]; 
sum -= arr[6];
return sum;

}

What location or value in the assembly above represents the 
C code’s sum variable?

%eax
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Assembly Exercise 3

0000000000401172 <sum_example2>:
0xc(%rdi),%eaxmov0c478b401172:
(%rdi),%eaxadd0703401175:
0x18(%rdi),%eaxsub

retq
18472b

c3
401177:
40117a:

int sum_example2(int arr[]) { 
int sum = 0;
sum += arr[0];
sum += arr[3]; 
sum -= arr[6];
return sum;

}

What location or value in the assembly code above 
represents the C code’s 6 (as in arr[6])?

0x18
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Our First Assembly
int sum_array(int arr[], int nelems) { 

int sum = 0;
for (int i = 0; i < nelems; i++) { 

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
$0x0,%eaxmov00000000b8401136:
$0x0,%edx
%esi,%eax

mov
cmp

00000000
f0

ba
39

40113b:
401140:

40114f <sum_array+0x19>jge0b7d401142:
%eax,%rcxmovslqc86348401144:
(%rdi,%rcx,4),%edxadd8f1403401147:
$0x1,%eax
401140 <sum_array+0xa>

add
jmp

01c0
f1

83
eb

40114a:
40114d:

%edx,%eaxmovd08940114f:
retqc3401151:

We’re 1/2 of the way to understanding assembly!
What looks understandable right now?
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A Note About Operand Forms

• Many instructions share the same address operand forms that mov uses.
• Eg. 7(%rax, %rcx, 2).

• These forms work the same way for other instructions, e.g. sub:
• sub 8(%rax,%rdx),%rcx -> Go to 8 + %rax + %rdx, subtract what’s there from %rcx

• The exception is lea:
• It interprets this form as just the calculation, not the dereferencing
• lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx
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Shift Amount

• When using %cl, the width of what you are shifting determines what portion 
of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know how 
much to shift.

• If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3 
bits, which represent 7. shlw shifts by 15 because it considers only the low-order 
log2(16) = 4 bits, which represent 15.

Instruction Effect Description

Left shift<< kD←Dk, Dsal

Left shift (same as sal)<< kD←Dk, Dshl

Arithmetic right shift>>A kD←Dk, Dsar

Logical right shift>>L kD←Dk, Dshr
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Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits 

are in %rax. The divisor is the operand to the instruction.
• The quotient is stored in %rax, and the remainder in %rdx.

DescriptionEffectInstruction

Signed dividemod S; 
S

R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

←
←

R[%rdx] 
R[%rax]

idivq S

Unsigned dividemod S; 
S

R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

←
←

R[%rdx] 
R[%rax]

divq S
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Extra Practice

https://godbolt.org/z/hGKPWszq4
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Reverse Engineering 1
int add_to(int x, int arr[], int i)

{ int sum = ? ;
sum += arr[ ? ];
return ? ;

}

add_to:
movslq %edx, %rdx 
movl %edi, %eax
addl (%rsi,%rdx,4), %eax 
ret
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Reverse Engineering 1
int add_to(int x, int arr[], int i)

{ int sum = ? ;
sum += arr[ ? ];
return ? ;

}

// x in %edi, arr in %rsi, i in
%edx add_to:

// sign-extend i into full register
// copy x into %eax
// add arr[i] to %eax

movslq %edx, %rdx 
movl %edi, %eax
addl (%rsi,%rdx,4), %eax 
ret
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Reverse Engineering 1
int add_to(int x, int arr[], int i)

{ int sum = x;
sum += arr[i];
return sum;

}

// x in %edi, arr in %rsi, i in
%edx add_to:

// sign-extend i into full register
// copy x into %eax
// add arr[i] to %eax

movslq %edx, %rdx 
movl %edi, %eax
addl (%rsi,%rdx,4), %eax 
ret
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Reverse Engineering 2
int elem_arithmetic(int nums[], int y)

{ int z = nums[ ? ] * ? ;
z -= ? ;
z >>= ? ; 
return ? ;

}

elem_arithmetic: 
movl %esi, %eax 
imull (%rdi), %eax 
subl 4(%rdi), %eax 
sarl $2, %eax
addl $2, %eax
ret
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Reverse Engineering 2
int elem_arithmetic(int nums[], int y)

{ int z = nums[ ? ] * ? ;
z -= ? ;
z >>= ? ; 
return ? ;

}

// nums in %rdi, y in %esi 
elem_arithmetic:

addl
ret

$2, %eax // add 2 to %eax

movl %esi, %eax 
imull (%rdi), %eax 
subl 4(%rdi), %eax 
sarl $2, %eax

// copy y into %eax
// multiply %eax by nums[0]
// subtract nums[1] from %eax
// shift %eax right by 2
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Reverse Engineering 2
int elem_arithmetic(int nums[], int y)

{ int z = nums[0] * y;
z -= nums[1];
z >>= 2;
return z + 2;

}

// nums in %rdi, y in %esi 
elem_arithmetic:

addl
ret

$2, %eax // add 2 to %eax

movl %esi, %eax 
imull (%rdi), %eax 
subl 4(%rdi), %eax 
sarl $2, %eax

// copy y into %eax
// multiply %eax by nums[0]
// subtract nums[1] from %eax
// shift %eax right by 2
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Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? ; 
return ? ;

}

func:
movq %rdi, %rax 
leaq 1(%rdi), %rcx 
movq %rcx, (%rsi) 
cqto
idivq %rcx
movq
ret

%rdx, %rax
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Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? ; 
return ? ;

}

// x in %rdi, ptr in %rsi 
func:

movq %rdi, %rax 
leaq 1(%rdi), %rcx 
movq %rcx, (%rsi)

movq
ret

%rdx, %rax // copy the remainder into %rax

// copy x into %rax
// put x + 1 into %rcx
// copy %rcx into *ptr

%rdxintoxsign-extend//cqto
1)(x +/calculate x//%rcxidivq
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Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = x + 1;
long result = x % *ptr; // or x +
1
return result;

}
// x in %rdi, ptr in %rsi 
func:

movq %rdi, %rax 
leaq 1(%rdi), %rcx 
movq %rcx, (%rsi)

movq
ret

%rdx, %rax // copy the remainder into %rax

// copy x into %rax
// put x + 1 into %rcx
// copy %rcx into *ptr

%rdxintoxsign-extend//cqto
1)(x +/calculate x//%rcxidivq
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Side Note: Old GCC Output
long func(long x, long *ptr) {

*ptr = x + 1;
long result = x % *ptr; // or x +
1
return result;

}
// x in %rdi, ptr in %rsi 
func:

leaq 1(%rdi), %rcx 
movq %rcx, (%rsi) 
movq %rdi, %rax
cqto
idivq %rcx
movq
ret

%rdx, %rax // copy the remainder into %rax

// put x + 1 into %rcx
// copy %rcx into *ptr
// copy x into %rax
// sign-extend x into %rdx
// calculate x / (x + 1)
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References and Advanced Reading
• References:

•

•

•

•

• Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/
x86-64.html
CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage_x86-64.pdf
gdbtui: https://beej.us/guide/bggdb/
More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
Compiler explorer: https://gcc.godbolt.org

• Advanced Reading:

•

•

• x86-64 Intel Software Developer manual: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
history of x86 instructions: https://en.wikipedia.org/wiki/
X86_instruction_listings
x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64


