
1

This document is copyright (C) Stanford Computer Science, Adam Keppler and Olayinka Adekola, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Nick Troccoli, Chris Gregg

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed. (without expressed written permission)

CS107, Lecture 17
Heap Allocators, Continued

Reading: B&O 9.9, 9.11

2

Attendance

https://forms.gle/zUvN2JSgATaD7aWm6

3

Lecture Plan

• Explicit Free List Allocator
• Explicit Allocator
• Coalescing
• In-place realloc

4

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

0x680x600x580x500x480x400x380x300x280x200x180x10

56
Free

8
Used

8
Free

5

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x108
Free0x500x108

Used0x50null8
Free

6

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x108
Free0x500x108

Used0x50null8
Free

This is inefficient – it triples the size of every header,
when we just need to jump from one free block to
another. And even if we just made free headers bigger,
it’s complicated to have two different header sizes.

7

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block. This is inefficient / complicated.

• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?

8

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block. This is inefficient / complicated.

• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure? More difficult to access in a separate place

– prefer storing near blocks on the heap itself.

9

Can We Do Better?

• Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

• Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

0x680x600x580x500x480x400x380x300x280x200x180x10

32
Free

24
Used

16
Free

10

Can We Do Better?

• Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

• Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x1032
Free

24
Used0x48null16

Free

0x10

First free block

11

Can We Do Better?

• Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

• Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

• This means each payload must be big enough to store 2 pointers (16 bytes). So
we must require that for every block, free and allocated. (why?)

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x1032
Free

24
Used0x48null16

Free

12

Explicit Free List Allocator

• This design builds on the implicit allocator, but also stores pointers to the next
and previous free block inside each free block’s payload.

• When we allocate a block, we look through just the free blocks using our linked
list to find a free one, and we update its header and the linked list to reflect its
allocated size and that it is now allocated.

• When we free a block, we update its header to reflect it is now free and
update the linked list.

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation)

13

Explicit Free List: List Design

How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

Better memory util,
Linear free

Constant free (push
recent block onto stack)

(more at end of lecture)

Up to you!

14

Explicit free list design

How do you want to organize your explicit free list?(utilization/throughput)
A. Address-order

B. Last-in first-out (LIFO)

C. Other (e.g., by size, etc.)

0x800x780x700x680x600x580x500x480x400x380x300x280x200x180x10

0x10null16
Free

16
Usednull0x1016

Free
16

Used0x400x7016
Free

Better memory util, linear free

Constant free (push recent block onto stack)

(see textbook)

Up to you!

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x1032
Free

24
Used0x48null16

Free

0x10

First free
block

0x70

First free
block

15

Implicit vs. Explicit: So Far

Implicit Free List
• 8B header for size + alloc/free status

• Allocation requests are worst-case
linear in total number of blocks

• Implicitly address-order

Explicit Free List
• 8B header for size + alloc/free status
• Free block payloads store prev/next

free block pointers

• Allocation requests are worst-case
linear in number of free blocks

• Can choose block ordering

16

Revisiting Our Goals

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

17

Revisiting Our Goals

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

18

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator
• Explicit Allocator
• Coalescing
• In-place realloc

19

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

64
Free

20

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

40
Freea + pad16

Used

21

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

16
Freeb + pad16

Useda + pad16
Used

22

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Useda + pad16
Used

23

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Freea + pad16
Used

24

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Freea + pad16
Free

25

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Freea + pad16
Free

We have enough memory space, but
it is fragmented into free blocks
sized from earlier requests!

We’d like to be able to merge
adjacent free blocks back together.
How can we do this?

26

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Freea + pad16
Free

Hey, look! I have a free
neighbor. Let’s be

friends! 

27

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Used

40
Free

Hey, look! I have a free
neighbor. Let’s be

friends! 

28

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

The process of combining adjacent
free blocks is called coalescing.

For your explicit heap allocator only
(not required for implicit), you
should coalesce if possible when a
block is freed. You only need to
coalesce the most immediate right
neighbor.

0x500x480x400x380x300x280x200x180x10

c16
Used

40
Free

29

Practice 1: Explicit (coalesce)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x580x500x480x400x380x300x280x200x180x10

A16
Used

16
FreeB24

Used

30

Practice 1: Explicit (coalesce)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x580x500x480x400x380x300x280x200x180x10

A16
Used

16
FreeB24

Used

0x580x500x480x400x380x300x280x200x180x10

A16
Used

48
Free

31

Revisiting Our Goals

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?

32

Revisiting Our Goals

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?

33

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator
• Explicit Allocator
• Coalescing
• In-place realloc

34

Realloc

• For the implicit free list allocator, we didn’t worry too much about realloc. We
always moved data when they requested a different amount of space.

• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

35

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 48);

0x580x500x480x400x380x300x280x200x180x10

16
Freea + pad48

Used

a’s earlier request was too small, so
we added padding. Now they are
requesting a larger size we can
satisfy with that padding! So realloc
can return the same address.

36

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 16);

0x580x500x480x400x380x300x280x200x180x10

16
Freea + pad48

Used

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

37

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 16);

0x580x500x480x400x380x300x280x200x180x10

16
Freea24

Freea16
Used

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

38

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

16
Freea + pad48

Used

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

39

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

a72
Used

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

Now we can still return the same
address.

40

Realloc: Growing In Place

void *a = malloc(8);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

24
Free

16
Freea + pad16

Used

For your project (explicit only), you
should combine with your right
neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

41

Realloc: Growing In Place

void *a = malloc(8);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

24
Freea40

Used

For your project (explicit only), you
should combine with your right
neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

42

Realloc: Growing In Place

void *a = malloc(8);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

a72
Used

For your project (explicit only), you
should combine with your right
neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

43

Realloc

• For the implicit free list allocator, we didn’t worry too much about realloc. We
always moved data when they requested a different amount of space.

• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

• If you can’t do an in-place realloc, then you should move the data elsewhere.

44

Practice 1: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

45

Practice 1: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

24
FreeA24

Used

46

Practice 2: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

47

Practice 2: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);
0x600x580x500x480x400x380x300x280x200x180x10

B16
UsedA56

Used

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

48

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

49

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x600x580x500x480x400x380x300x280x200x180x10

B16
UsedA56

Used

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

50

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x600x580x500x480x400x380x300x280x200x180x10

B16
UsedA56

Used

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

For the explicit allocator, note that
we can’t have payload less than 16
bytes, so here the only option for
the leftover 8 bytes is to use it as
padding for the existing block.

51

Final Assignment: Explicit Allocator

• Must have headers that track block information like in implicit (size, status in-
use or free) – you can copy from your implicit version

• Must have an explicit free list managed as a doubly-linked list, using the first
16 bytes of each free block’s payload for next/prev pointers.

• Must have a malloc implementation that searches the explicit list of free
blocks.

• Must coalesce a free block in free() whenever possible with its immediate right
neighbor. (only required for explicit)

• Must do in-place realloc when possible (only required for explicit). Even if an
in-place realloc is not possible, you should still absorb adjacent right free
blocks as much as possible until you either can realloc in place or can no longer
absorb and must realloc elsewhere.

52

Final Project Tips

Read B&O textbook.
• Offers some starting tips for implementing your heap allocators.
• Make sure to cite any design ideas you discover.
Honor Code/collaboration
• All non-textbook code is off-limits.
• Please do not discuss discuss code-level specifics with others.
• Your code should be designed, written, and debugged by you

independently.
Helper Hours
• We will provide good debugging techniques and strategies!
• Come and discuss design tradeoffs!

