
Wed., February 21st, 2024

Computer Systems

Winter 2024

Stanford University

Computer Science Department

Reading: Course Reader: x86-64 Assembly
Language, Textbook: Chapter 3.1-3.4

Lecturer: Chris Gregg

CS 107
Lecture 18:

Assembly Part IV

1

Today's Topics
• Logistics
• Reading: Course Reader: x86-64 Assembly Language;Textbook, Chapter 3.1-3.4
• Programs from class: /afs/ir/class/cs107/samples/lect18
• PDF handout in class: https://web.stanford.edu/class/cs107/lectures/15/asm-

intro.pdf
• x86 reference sheet handout: https://web.stanford.edu/class/cs107/resources/

x86-64-reference.pdf
• Introduction to x86 Assembly Language

• Overview of assembly code and the weirdness of x86 (primarily historical)
• First example: HelloWorld, gcc -S, gdbtui
• Second Example: Looper

• Registers
• Data formats
• Addressing Modes
• The mov instruction
• Access to variables of various types

2

https://web.stanford.edu/class/cs107/lectures/15/asm-intro.pdf
https://web.stanford.edu/class/cs107/lectures/15/asm-intro.pdf
https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf
https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

3

Control
• So far, we have only been discussing "straight-line" code, where one

instruction happens directly after the previous instruction.
• However, it is often necessary to perform one instruction or another

instruction based on the logic in our programs, and assembly code gives us
tools to do this.

• We can alter the flow of code using a "jump" instruction, which indicates that
the next instruction will be somewhere else in the program (this is called a
branch)

• We will start by discussing "condition codes" that are set when we do
arithmetic (and other operations), and then we will talk about jump
instructions to change control flow.

4

Condition Codes
• Besides the registers we have already discussed, the CPU has a separate

set of single-bit condition code registers describing attributes of recent
operations.

• We can use these registers (by testing them) to perform branches in the
code.

• These are the most useful condition code registers:
• CF: Carry flag. The most recent operation generated a carry out of the most

significant bit. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two's-complement overflow—

either negative or positive.

5

Condition Codes: Examples
• CF: Carry flag. The most recent operation generated a carry out of the most

significant b/t. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two's-complement overflow—

either negative or positive.

int a = 5;
int b = -5;
int t = a + b;

Which flag above would be set?

The ZF flag.

6

Condition Codes: Examples
• CF: Carry flag. The most recent operation generated a carry out of the most

significant b/t. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two's-complement overflow—

either negative or positive.

int a = 5;
int b = -5;
int t = a + b;

Which flag above would be set?

The ZF flag.

int a = 5;
int b = -20;
int t = a + b;

Which flag above would be set?

The SF flag.

7

Condition Codes
• The leaq instruction does not set any condition codes (because it is intended

for address computations), but the other arithmetic instructions we talked about
do set them (inc, dec, neg, not, add, sub, imul, xor, or, and, shl, sar,
shr, etc.)

• For logical operations (e.g., xor), the carry and overflow flags are set to 0.
• For shift operations, the carry flag is set to the last bit shifted out, while the

overflow flag is set to zero.
• inc and dec set the overflow and zero flags, but leave the carry flag unchanged

(see here about a potential reason why).

https://stackoverflow.com/questions/13435142/why-do-the-inc-and-dec-instructions-not-affect-the-carry-flag-cf

8

cmp and test
• There are two types of instructions we can use that set the condition codes

without altering any other registers, the cmp and test instructions:

Instruction Based on Description
CMP S1, S2 S2 - S1 Compare
 cmpb Compare byte
 cmpw Compare word
 cmpl Compare double word
 cmpq Compare quad word

TEST S1, S2 S2 & S1 Test

 testb Test byte
 testw Test word
 testl Test double word
 testq Test quad word

• By setting the condition codes,
we can set up for a jump or
other logic, based on some
condition (e.g., whether a
register has reached a certain
value.

• Be careful! The operands for
cmp are listed in reverse order!
(cmp is based on the sub
instruction)

• Often, we use
testq %rax, %rax to see
whether %rax is negative, zero,
or positive.

9

Accessing the Condition Codes
• There are three common ways to use the condition codes:

1. We can set a single byte to 0 or 1 depending on some combination of the
condition codes.

2. We can conditionally jump to some other part of the program.
3. We can conditionally transfer data.

10

• There are three common ways to use the condition codes:
1. We can set a single byte to 0 or 1 depending on some combination of the
condition codes.

2. We can conditionally jump to some other part of the program.
3. We can conditionally transfer data.

Accessing the Condition Codes

Instruction Synonym Set Condition
sete D setz Equal / zero
setne D setnz Not equal / not zero
sets D Negative
setns D Nonnegative
setg D setnle Greater (signed >)
setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)
setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)
setae D setnb Above or equal (unsigned >=)
setb D setnae Below (unsigned <)
setbe D setna Below or equal (unsigned <=)

int comp(data_t a, data_t b)

a in %rdi, b in %rsi

comp:

cmpq %rsi, %rdi # Compare a:b

setl %al # Set low-order byte of

 # %eax to 0 or 1

movzbl %al, %eax # Clear rest of %eax

 # (and rest of %rax)

ret

Example: a < b

11

• There are three common ways to use the condition codes:
1. We can set a single byte to 0 or 1 depending on some combination of the
condition codes.

2. We can conditionally jump to some other part of the program.
3. We can conditionally transfer data.

Accessing the Condition Codes

Instruction Synonym Set Condition
jmp Label Direct jump

jmp *Operand Indirect jump

je Label jz Equal / zero (ZF=1)
jne Label jnz Not equal / not zero (ZF=0)
js Label Negative (SF=1)
jns Label Nonnegative (SF=0)
jg Label jnle Greater (signed >) (ZF=0 and SF=OF)
jge Label jnl Greater or equal (signed >=) (SF=OF)
jl Label jnge Less (signed <) (SF != OF)
jle Label jng Less or equal (signed <=) (ZF=1 or SF!=OF)

ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)
jae Label jnb Above or equal (unsigned >=) (CF = 0)
jb Label jnae Below (unsigned <) (CF = 1)
jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

• Jump instructions jump to labels
in assembly code, and those
labels are changed to
addresses (most often relative)

• jmp is an unconditional jump,
meaning that the jump is always
taken.

• Unconditional jumps can be
direct or indirect

• Conditional jumps must be
direct.

12

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Compile to an object file:
gcc -c -Og while_loop.c

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

13

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

Set %eax to 0
Compile to an object file:
gcc -c -Og while_loop.c

14

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

%rax: 0
Compile to an object file:
gcc -c -Og while_loop.c

15

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

compare %eax to 0x63 (99d) by
subtracting %eax - 0x63, setting the Sign
Flag (SF) because the result is negative.

%rax: 0
Compile to an object file:
gcc -c -Og while_loop.c

16

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

jle is "jump less than or equal." The Sign
Flag indicates that the result was negative
(less than), so we jump to 0x7.

%rax: 0
Compile to an object file:
gcc -c -Og while_loop.c

17

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

Add 1 to %eax

%rax: 1
Compile to an object file:
gcc -c -Og while_loop.c

18

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

%rax: 1

Compare %eax to 0x63 (99d) by subtracting %eax - 0x63. When %rax
is 0, what flags change based on the the comparison? (We care about Zero
Flag, Sign Flag, Carry Flag, and Overflow Flag):

Compile to an object file:
gcc -c -Og while_loop.c

0 - 99, so SF and CF

19

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

%rax: 1

Eventually, this will become positive (when
%eax is 100), and the loop will end.

Compile to an object file:
gcc -c -Og while_loop.c

20

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

Could the compiler have done better with
this loop?

Compile to an object file:
gcc -c -Og while_loop.c

21

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Compile to an object file:
gcc -c -Og while_loop.c

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x64,%eax
 0x0000000000000005 <+5>: sub $0x1,%eax
 0x0000000000000008 <+8>: jne 0x5 <loop+5>
 0x000000000000000a <+10>: repz retq
End of assembler dump.

Fewer lines, less jumping!

gcc -c -O1 while_loop.c

22

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Compile to an object file:
gcc -c -Og while_loop.c

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x64,%eax
 0x0000000000000005 <+5>: sub $0x1,%eax
 0x0000000000000008 <+8>: jne 0x5 <loop+5>
 0x000000000000000a <+10>: repz retq
End of assembler dump.

Could we do better?

gcc -c -O1 while_loop.c

23

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Compile to an object file:
gcc -c -Og while_loop.c

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: repz retq
End of assembler dump.

Sure! As the optimization level goes up, gcc
gets smarter! The compiler realized that this
loop is not doing anything, so it completely
optimized it out!

gcc -c -O1 while_loop.c
gcc -c -O2 while_loop.c

24

Practice: Reverse-engineer Assembly to C
• Take the following function:

long test(long x, long y, long z) {
 long val = __________;
 if (__________) {
 if (_________)
 val = __________;
 else
 val = __________;
 } else if (__________)
 val = __________;
 return val;
}

x in %rdi, y in %rsi, z in %rdx
test:
 leaq (%rdi,%rsi), %rax
 addq %rdx, %rax
 cmpq $-3, %rdi
 jge .L2
 cmpq %rdx, %rsi
 jge .L3
 movq %rdi, %rax
 imulq %rsi, %rax
 ret
.L3:
 movq %rsi, %rax
 imulq %rdx, %rax
 ret
.L2:
 cmpq $2, %rdi
 jle .L4
 movq %rdi, %rax
 imulq %rdx, %rax
.L4:
 rep; ret

25

Practice: Reverse-engineer Assembly to C
• Take the following function:

long test(long x, long y, long z) {
 long val = x + y + z;
 if (x < -3) {
 if (y < z)
 val = x * y;
 else
 val = y * z;
 } else if (x > 2)
 val = x * z;
 return val;
}

x in %rdi, y in %rsi, z in %rdx
test:
 leaq (%rdi, %rsi), %rax
 addq %rdx, %rax
 cmpq $-3, %rdi
 jge .L2
 cmpq %rdx, %rsi
 jge .L3
 movq %rdi, %rax
 imulq %rsi, %rax
 ret
.L3:
 movq %rsi, %rax
 imulq %rdx, %rax
 ret
.L2:
 cmpq $2, %rdi
 jle .L4
 movq %rdi, %rax
 imulq %rdx, %rax
.L4:
 rep; ret

26

Conditional Moves
• The x86 processor provides a set of "conditional move" instructions that move

memory based on the result of the condition codes, and that are completely
analogous to the jump instructions:
Instruction Synonym Move Condition
cmove S,R cmovz Equal / zero (ZF=1)
cmovne S,R cmovnz Not equal / not zero (ZF=0)
cmovs S,R Negative (SF=1)
cmovns S,R Nonnegative (SF=0)
cmovg S,R cmovnle Greater (signed >) (SF=0 and SF=OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF=OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)
cmovle S,R cmovng Less or equal (signed <=) (ZF=1 or SF!=OF)

cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)
cmovbe S,R cmovna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

• With these instructions, we
can sometimes eliminate
branches, which are
particularly inefficient on
modern computer
hardware.

27

Jumps -vs- Conditional Move
long absdiff(long x, long y)
{
 long result;
 if (x < y)
 result = y - x;
 else
 result = x - y;
 return result;
}

long cmovdiff(long x, long y)
{
 long rval = y-x;
 long eval = x-y;
 long ntest = x >= y;
 if (ntest) rval = eval;
 return rval;
}

x in %rdi, y in %rsi
cmovdiff:
 movq %rsi, %rax
 subq %rdi, %rax
 movq %rdi, %rdx
 subq %rsi, %rdx
 cmpq %rsi, %rdi
 cmovge %rdx, %rax
 ret

x in %rdi, y in %rsi
absdiff:
 cmpq %rsi, %rdi
 jge .L2
 movq %rsi, %rax
 subq %rdi, %rax
 ret
.L2:
 movq %rdi, %rax
 subq %rsi, %rax
 ret

Which is faster?
Let's test!

Extra Slides

Extra Slides

28

29

Digging Deeper: Jump Instruction Encodings
• As we have mentioned before, assembly language is still one step higher than

machine code.
• It is instructive in this case to look at the machine code for some jump

instructions, just to see how the underlying machine is referencing where to
jump.

• Remember, %rip is the instruction pointer, which has an address of the current
instruction.
• Well…kind of. On older x86 machines, when an instruction was executing,

the first thing that happened was that %rip is changed to point to the next
instruction. The instruction set has retained this behavior.

• Jump instructions are often encoded to jump relative to %rip. Let's see what
that means in practice…

30

Digging Deeper: Jump Instruction Encodings
• Let's look at our while loop again:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retqCompile to an object file:

gcc -c -Og while_loop.c

31

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

0-based addresses for each
instruction (will be replaced
with real addresses when a full
program is created)

Compile to an object file:
gcc -c -Og while_loop.c

32

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

Machine code for the instructions.
Instructions are "variable length" —
the mov instruction is 5 bytes, the
tmp is 3 bytes, etc.

Compile to an object file:
gcc -c -Og while_loop.c

33

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

The jmp instruction. "eb" means that this is a jmp,
and 03 is the number of instructions to jump, relative
to %rip. When the instruction is executing, %rip is
set to the next instruction (7 in this case). So…7 + 3
is 0xa, so this instruction jumps to 0xa.

Compile to an object file:
gcc -c -Og while_loop.c

34

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

The cmp instruction. Notice that the 0x63 is
embedded into the machine code, because it is an
immediate value.

Compile to an object file:
gcc -c -Og while_loop.c

35

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

The jle instruction. "7e" means that this is a jle
(jump if less than), and f8 is the number of instructions
to jump (in two's complement! So, it means -8), relative
to %rip, which is at 0xf when the instruction is running.
So, 0xf - 8 is 0xa, so this instruction jumps to 0x7.

Compile to an object file:
gcc -c -Og while_loop.c

