
Wed., February 28, 2024

Computer Systems

Winter 2024

Stanford University 

Computer Science Department


Reading: Course Reader: x86-64 Assembly 
Language, Textbook: Chapter 3.1-3.4


Lecturer: Chris Gregg

CS 107 
Lecture 21: Assembly 
Finale, Managing the 

Heap

1

malloc()
calloc()
realloc()
free()



Today's Topics
• Reading: Chapter 9.9 
• Programs from class: /afs/ir/class/cs107/samples/lect21

Logistics 
Bank vault — how is it going? 
This week's lab: work on A5 

• More x86 Assembly Language 
• Structures 
• Alignment 
• Function pointers 

• Managing the Heap 
Program Address Space 
What does it mean to allocate memory? 
The Heap, under the hood 

Why do we have both stack and heap allocation? 
Refresher on malloc, free, and realloc. 
Allocator Requirements 
Allocator Goals2



Structures
• Example:
struct rec {
    int i;
    int j;
    int a[2];
    int *p;
};

• This structure has four fields: two 4-byte values of type int, a 
two-element array of type int, and an 8-byte int pointer, for a 
total of 24 bytes:

Offset 0 4 8 16 24

Contents i j a[0] a[1] p

• Notice that all struct manipulation is handled at compile time, and the machine 
code doesn't contain any information about the field declarations or the names of 
the fields. 

• The compiler does all the work, keeping track as it produces the assembly code. 
• BTW, if you're curious about how the compiler actually does the transformation 

from C to assembly, take a compilers class, e.g., CS143.



Data Alignment
• Computer systems often put restrictions on the allowable addresses for primitive 

data types, requiring that the address for some objects must be a multiple of 
some value K (normally 2, 4, or 8). 

• These alignment restrictions simplify the design of the hardware. 
• For example, suppose that a processor always fetches 8 bytes from the memory 

system, and an address must be a multiple of 8. If we can guarantee that any 
double will be aligned to have its address as a multiple of 8, then we can read or 
write the values with a single memory access. 

• For x86-64, Intel recommends the following alignments for best performance: 

K Types
1 char

2 short

4 int, float

8 long, double, char *



Data Alignment
• The compiler enforces alignment by making sure that every data type is organized 

in such a way that every field within the struct satisfies the alignment restrictions. 
• For example, let's look at the following struct: 

struct S1 {
    int i;
    char c;
    int j;
};

• If the compiler used a minimal allocation: 
• This would make it impossible to align fields i (offset 0) and j (offset 5). Instead, 

the compiler inserts a 3-byte gap between fields c and j:

Offset 0 4 5 9

Contents i c j

Offset 0 4 5 8 12

Contents i c j

• So, don't be surprised if your structs have a sizeof() that is larger than you expect!



Function Pointers in Assembly
• Let's look at the following code:
void *gfind_max(void *arr, int n, size_t elemsz, 
                int (*compar)(const void *, const void *))
{
    void *pmax = arr;
    for (int i = 1; i < n; i++) {
        void *ith = (char *)arr + i*elemsz;
        if (compar(ith, pmax) > 0)
            pmax = ith;
    }
    return pmax;
}

int cmp_alpha(const void *p, const void *q)
{
    const char *first = *(const char **)p;
    const char *second = *(const char **)q;
    return strcmp(first, second);
}

int main(int argc, char *argv[])
{
    char **pmax = gfind_max(argv+1, argc-1, sizeof(argv[0]), cmp_alpha);
    printf("max = %s\n", *pmax);
    return 0;
}



Function Pointers in Assembly
• Let's look at the following code:
void *gfind_max(void *arr, int n, size_t elemsz, 
                int (*compar)(const void *, const void *))
{
    void *pmax = arr;
    for (int i = 1; i < n; i++) {
        void *ith = (char *)arr + i*elemsz;
        if (compar(ith, pmax) > 0)
            pmax = ith;
    }
    return pmax;
}

int cmp_alpha(const void *p, const void *q)
{
    const char *first = *(const char **)p;
    const char *second = *(const char **)q;
    return strcmp(first, second);
}

int main(int argc, char *argv[])
{
    char **pmax = gfind_max(argv+1, argc-1, sizeof(argv[0]), cmp_alpha);
    printf("max = %s\n", *pmax);
    return 0;
}

• Because compar is a function 
pointer, the compiler calls the 
function via the address that is 
in the compar variable. 

• Let's take a look at this in gdb.



Assembly Wrap
• At this point, we've gone through all of the basics of x86 assembly 
• Are you an expert? Unlikely (very few people are). 
• Did we cover all of the x86 instructions? 

• Hardly! There are about 6000 instructions, and no one outside Intel even knows 
exactly! 

• See here for more information: https://www.youtube.com/watch?
v=KrksBdWcZgQ  

• Assembly used to be hand-written often, but today, that is very rare. 
• Most Nintendo Entertainment Systems (NES) games were written in assembly! 
• Some interesting x86 programs (like Roller Coaster Tycoon) were written in 

assembly 
• These days, understanding assembly is more important, and that's what this 

week's assignment helps you with. Sometimes, you need to dig deep to 
understand what is happening in your program!

https://fgiesen.wordpress.com/2016/08/25/how-many-x86-instructions-are-there/
https://www.youtube.com/watch?v=KrksBdWcZgQ
https://www.youtube.com/watch?v=KrksBdWcZgQ
https://www.youtube.com/shorts/kFjSxwijItU


Managing the Heap



What does it mean to allocate memory?
As we have discussed, your programs have two areas of main memory: the stack and 
the heap. 

Your program has (by default) 8MB of stack space that it must manage based on the 
conventions we discussed when learning assembly code. 

The heap, on the other hand, is ultimately controlled by the operating system, and a 
"heap allocator" (your final project!) maintains the heap as a collection of contiguous 
memory blocks that are either free or allocated. 

An allocated block has been reserved for a particular application. When you call 
malloc(), you now have access to an allocated block, and only your program can 
modify or read the values in that block. Allocated blocks remain allocated for the rest of 
your program, or until you free() them. If your program ends, the heap allocator frees 
the block.

10



Program Address Space
Ever wonder what happens when you type the following? 

./program_name

The OS loader handles this — it does the following: 
1. Creates a new process  
2. Sets up address space/segments  
3. Reads executable file, loads instructions, global data  

Mapped from file into green segments  
4. Libraries loaded on demand  
5. Sets up and reserves the 8MB stack  

Reserves stack segment, initializes %rsp, calls main  
6. malloc written in C, will init self on use  
7. Asks OS for large memory region, parcels out to service 

requests 

0x7ffffffff000

0x7ffff7ffe000

8MB reserved

Sized for library

Grows on demand

Sized for executable

Shared library 
text/data

Text

(machine code)

Low addresses 
deliberately unmapped

0x602010

0x600000

0x400000

Heap

Global data

Stack

11



Why do we have both stack and heap allocation?
As we have discussed before, stack memory is limited and serves as a scratch-
pad for functions, and it is continually being re-used by your functions. Stack 
memory isn't persistent, but because it is already allocated to your program, it is 
fast. 

Heap memory takes more time to set up (you have to go through the heap 
allocator), but it is unlimited (for all intents and purposes), and persistent for the 
rest of your program.

12



malloc, free, and realloc refresher

void *malloc(size_t size) 
Return pointer to memory block >= requested size  
(failure returns NULL and sets errno)  

void free(void *p) 
Recycle memory block 
p must be from previous malloc/realloc call  

void *realloc(void *p, size_t size) 
Changes size of block p, returns pointer to block (possibly same)  
Contents of new block unchanged up to min of old and new size  
If the new pointer isn't the same as the old pointer, the old block will have been free’d 

This is what your heap allocator is going to do!

13



Allocator Requirements
The heap allocator must be able to service arbitrary sequence of malloc() and free() 
requests  

malloc must return a pointer to contiguous memory that is equal to or greater 
than the requested size, or NULL if it can't satisfy the request. 
The payload contents (this is the area that the pointer points to) are unspecified — 
they can be 0s or garbage. 
If the client introduces an error, then the behavior is undefined 
• If the client tries to free non-allocated memory, or tries to use free'd memory. 

The heap allocator has some constraints: 
It can't control the number, size, or lifetime of the allocated blocks. 
It must respond immediately to each malloc request 

I.e., it can't reorder or buffer malloc requests — the first request must be handled 
first. 
It can defer, ignore, or reorder requests to free

14



Allocator Requirements (continued)
Other heap allocator constraints: 
The allocator must align blocks so they satisfy all alignment requirements  

i.e., 16 byte alignment for GNU malloc (libc malloc) on 64-bit Linux (for your 
assignment, we only ask that you align on an 8-byte boundary). 

The allocated payload must be maintained as-is  
The allocator cannot move allocated blocks, such as to compact/coalesce free. 
• Why not? 

•The allocator can manipulate and modify free memory 

All of the programs with allocated memory would have corrupted pointers!

15



Allocator Goals
The allocator should first and foremost attempt to service malloc and free requests 
quickly. 

Ideally, the requests should be handled in constant time and should not degrade to 
linear behavior (we will see that some implementations can do this, some cannot) 

The allocator must try for a tight space utilization. 
Remember, the allocator has a fixed block of memory to dole out smaller parts — it 
must try to allocate efficiently 
The allocator should try to minimize fragmentation. 
It should try to group allocated blocks together. 
There should be a small overhead relative to the payload (we will see what this 
mean soon!)

16



Allocator Goals (continued)
It is desirable for a heap allocator to have the following properties: 

Good locality 
• Blocks are allocated close in time are located close in space 
• "Similar" blocks are allocated close in space 

Robust 
• Client errors should be recognized 

• What is required to detect and report them? 
Ease of implementation and maintenance 
• Having *(void **) all over the place makes for hard-to-maintain code. 

Instead, use structs, and typedef when appropriate. 
• The code is necessarily complex, but the more efforts you put into writing clean 

code, the more you will be rewarded by easier-to-maintain code.

17



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

(free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x0
a 0xffffe800 0xbeef

18



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

(free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x0
a 0xffffe800 0xbeef

Each section 
represents 4 
bytes

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

19



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

(free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x0
a 0xffffe800 0xbeef

Each section 
represents 4 
bytes

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

20



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

aaaaaaaa (free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x0
a 0xffffe800 0x100

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

21



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

aaaaaaaa bbbb (free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x110
a 0xffffe800 0x100

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

22



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

aaaaaaaa bbbb cccccccccccc (free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

23



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

aaaaaaaa bbbb cccccccccccc dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

24



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

(free) bbbb cccccccccccc dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

25



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

(free) bbbb (free) dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

26



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x100
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

eeee (free) bbbb (free) dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

27



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x100
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

eeee (free) bbbbbbbbbbbb (free) dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

28



Tracing the Heap (possible implementation)

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x140
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

(free) bbbbbbbbbbbb (free) dddddddd eeeeeeeeeeee (free)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

29



Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x140
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100
f 0xffffe7f0 0x0

Returns NULL

(free) bbbbbbbbbbbb (free) dddddddd eeeeeeeeeeee (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

30



Heap Allocator Implementation Issues
•How do we track the information in a block? 

•Remember, free() is only given a pointer, not a size 

•How do we organize/find free blocks? 

•How do we pick which free block from available options?  

•What do we do with excess space when allocating a block? 

•How do we recycle a freed block? 

31



One possibility: Separate list / table
•We could have a separate list or table that holds the free and in-use information. 

•Given an address, how do we look up the information? 
•How do we update the list or table to service mallocs and frees? 
•How much overhead is there per block? 

•The separate list approach could be a reasonable approach (we would have to answer 
all of the above questions…), but it is not often used in practice, although there are 
some exceptions: 

•There are some special-case allocators that use this 
•Valgrind uses this, because it needs to keep track of lots more information than 
just the used / free blocks.

32



Another Possibility
•A second possibility, and the one that is actually common and used in practice, uses 
what is called a block header to hold the information. 

•The block header is actually stored in the same memory area as the payload, and it 
generally precedes the payload.

33



Another Possibility
•A second possibility, and the one that is actually common and used in practice, uses 
what is called a block header to hold the information. 

•The block header is actually stored in the same memory area as the payload, and it 
generally precedes the payload.

88

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

34



Another Possibility
•A second possibility, and the one that is actually common and used in practice, uses 
what is called a block header to hold the information. 

•The block header is actually stored in the same memory area as the payload, and it 
generally precedes the payload.

88

F

•This is where things start to get a bit tricky. The heap allocator has 96 bytes, and it 
needs to keep the free block information in those 96 bytes (I N C E P T I O N) 
•In other words, the heap allocator is using part of the 96 bytes as housekeeping. 
•In this case, 8 bytes are taken up with the information that there are 88 Free (F) bytes 
ahead in the block.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

35



Another Possibility
a = malloc(16);

16

U aaaaaaaa 64


F

•This is where things start to get a bit tricky. The heap allocator has 96 bytes, and it 
needs to keep the free block information in those 96 bytes (I N C E P T I O N) 
•In other words, the heap allocator is using part of the 96 bytes as housekeeping. 
•Note here that there are now 16 bytes of overhead, because there are two header 
blocks. 
•Here, the first 8-byte header block denotes 16 Used bytes, then there is a 16 byte 
payload, and then there is another 8-byte header to denote the 64 free bytes after. 
•

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810
b 0xffffe808
a 0xffffe800 0x108

36



Another Possibility
a = malloc(16);
b = malloc(8);

16

U aaaaaaaa 8


U bbbb 48

F

•We changed the header to reflect the fact that 8 bytes are going to to b, and we 
added a header for the remaining 48 bytes. 
•Also, note that the pointer returned for a is 0x108, and the pointer returned for b 
is 0x120.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810
b 0xffffe808 0x120
a 0xffffe800 0x108

37



Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);

16

U aaaaaaaa 8


U bbbb 24

U cccccccccccc 16


F

•Now we only have 16 bytes left for payloads…let's free some memory.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

38



Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);

16

U aaaaaaaa 8


U bbbb 24

U cccccccccccc 16


F

•Notice that 0x108 will be passed to free. How do we know how much to free? 
•We have to do some pointer arithmetic, so we can grab the 16 from address 
0x100 (this diagram does not reflect the free yet). 

•As you'll find out when writing your heap allocator: the arithmetic is super important.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

39



Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);

16

F aaaaaaaa 8


U bbbb 24

U cccccccccccc 16


F

•The diagram now reflects the free. 
•The change to the diagram was subtle — the only thing that changed was that the 
block header now says "F" (free) instead of "U" (used). This is because the data 
remains, but it can be written over any time after we reassign that block — this 
can cause bugs! For clarity sake, on the next page, we'll remove the `aaaaaaaa`, 
but know that the heap allocator doesn't wipe it clean (this another reason that 
free can be fast!)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

40



Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);
free(c);

16

F

8

U bbbb 24


U cccccccccccc 16

F

•Again, 0x130 is passed in to this free, so we need to figure out that we need to 
look at address 0x128 for the amount of bytes to free. 
•On the next slide, we will remove the `cccccccccccc`, but again: it is not cleared 
out, and we're just doing this for the sake of clarity on the diagram.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

41



Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);
free(c);

16

F

8

U bbbb 24


F
16

F

•This diagram shows one possible result of the free. Note that we have actually 
fragmented our free space! It looks like we only have a block of 24 bytes and then 
a block of 16 bytes to allocate, yet we should have a block of 48 bytes (we can 
save a header, too!)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

42



Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);
free(c);

16

F

8

U bbbb 48


F

•When we combine free blocks, this is called coalescing, and it is an important tool 
that the heap allocator uses to keep memory as unfragmented as possible. 
•We can't coalesce any more because b is in the middle, and we absolutely cannot 
move that block until the program we gave it to frees it.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

43


