
Monday, March 11, 2024

Computer Systems

Winter 2024

Stanford University

Computer Science Department

Reading: Course Reader: x86-64 Assembly
Language, Textbook: Chapter 3.1-3.4

Lecturer: Chris Gregg

CS 107
Lecture 26: A short
history of UNIX and

Linux

1

Admin
• Assignment 6, due Thursday
• Final exam prep materials have been released

• Generics will be on the exam, so look at the midterm questions that have
that material

• Final exam:
• Monday, March 18th, 3:30pm-6:30pm, CEMEX auditorium

• Today's topics:
• The history of UNIX and Linux

Feedback
"Since heap allocator is our capstone project, I also believe that it should be our final1. It is an extremely
quick turnaround to submit heap allocator on Friday night and then start studying for a final on Monday
afternoon. Additionally, many students (including myself) have multiple finals early during finals
week2, so we have to dedicate time for studying for those classes too. I believe that for a 5 unit class, it is
sufficient for heap allocator to count as our final project. On a separate note, binary bomb took me over 60
hours to complete. I know that I am not alone in this, as I have talked to my classmates and it also took them
a long time to complete. While the assignment accomplishes its goal of teaching us assembly (I truly did learn
a lot) maybe consider only making it three levels3. I think we would learn just as much by removing the
second or third level and keeping the fourth as a challenge."

1. We're having a final because I want to ensure that you've learned the material. The
assignments are great, but there are a lot of students who make it through the assignments
without really learning the material.

2. Yes, I know you have multiple exams. Unfortunately, that's one of the challenges of college.
3. Binary Bomb was, until a few years ago, five levels.

Final thoughts: this is a hard class! You've done great — hopefully the frustration is/was worth it!

A history of UNIX and Linux

Bell Labs

• For most of the 20th century, the research lab to be associated with was Bell Labs. Researchers at Bell
Labs had the following discoveries and inventions:
• Discovered cosmic background radiation
• Invented the transistor
• Invented the laser
• Invented the photovoltaic cell
• Invented the charge-coupled device (CCD) (the image sensor in your phone's digital camera)
• Made significant contributions to information theory
• Invented the Unix operating system
• Invented the following programming languages:

• B, C, C++, S, SNOBOL, AWK, AMPL (among others)
• There have been 10 Nobel prizes awarded for work done at Bell Labs

The PDP11
• Needless to say, Bell has a storied history, and there are lots of videos on

YouTube about it (examples: 1, 2, 3)
• Two employees of Bell Labs, Dennis Ritchie and Ken Thompson, decided in

1969 to create an operating system that could be used on a minicomputer.
• They initially planned the operating system for Bell Labs use
• The "minicomputers" they ran it on were 16-bit machines designed in the

1960s. One of the most prominent minicomputers was the Digital
Equipment Corporation's PDP-11 minicomputer
• They were not cheap: the first one cost $20,000 ($160K today)
• They were not powerful: 16-bits, and the early ones had 4KB of memory

(!). They eventually had 1-2MB of memory, and between 10MB and
500MB hard drives (your computer may have a 1TB solid state drive,
with 2000 times more space).

• There were not that "mini" — they weighed more than 500lbs (oh, and
that hard drive weighed another 300lbs)

• The computer was usually (through the mid-1970s) interacted with through
a "teletype machine," not a keyboard and monitor.

https://www.youtube.com/watch?v=eksTJOmlxbU
https://www.youtube.com/watch?v=QFK6RG47bww
https://www.youtube.com/watch?v=OJsKgiGGzzs
https://www.youtube.com/watch?v=JoVQTPbD6UY
https://www.youtube.com/watch?v=JoVQTPbD6UY
https://youtu.be/S81GyMKH7zw?si=pdepQPTToJLQto21&t=76

The Unix Philosophy
• Ken Thompson (left) and Dennis Ritchie (right) decided that Unix would

have a set of basic rules, known as "the Unix Philosophy."
• "The Unix philosophy emphasizes building simple, compact, clear,

modular, and extensible code that can be easily maintained and
repurposed by developers other than its creators." (Wikipedia, The Unix
Philosophy)

• The Unix philosophy is documented by Doug McIlroy in the Bell System
Technical Journal from 1978:

• Make each program do one thing well. To do a new job, build afresh rather than complicate old
programs by adding new "features".

• Expect the output of every program to become the input to another, as yet unknown, program.
Don't clutter output with extraneous information. Avoid stringently columnar or binary input
formats. Don't insist on interactive input.

• Design and build software, even operating systems, to be tried early, ideally within weeks. Don't
hesitate to throw away the clumsy parts and rebuild them.

• Use tools in preference to unskilled help to lighten a programming task, even if you have to
detour to build the tools and expect to throw some of them out after you've finished using them.

https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/Unix_philosophy

Key Unix Ideas
• Many of the basic ideas that Thompson and Ritchie came up with for

Unix are still used in today's Linux operating systems.
• The following commands are still used today (and cd was originally
chdir):
• ls, mkdir, rmdir, sort, who, echo, find, cat,
chmod, exit, rm, date, dc, ed, mail, wc

• The idea of "pipelining" came along in an early version of Unix
• Users can create modular chains of producer-consumer programs to do various tasks (you've

seen this in some of the tests for our programs, e.g., sort samples/names | uniq -c
| sort -n | ./mytail

• When you have basic utilities, you can do some powerful things with them, and we can still do
those today — the video above has an example with numbers, and I can do that on my Mac
today:

echo "2^100" | bc | number | say

https://youtu.be/XvDZLjaCJuw?si=lXjQRe6rdBCNKiLl&t=777

Unix Expands Outside Bell Labs
• The original Bell Labs Unix was completely open source, though Bell (by

then, AT&T) sold licenses for others to use it.
• In 1974, UC Berkeley got a copy of the source, and installed it onto a

PDP11 that was bought to run the system (though they had to share the
computer with the math and statistics departments, who ran a different
OS, so Unix only ran for 8 hours per day or night).

• In 1975, Ken Thompson took a sabbatical from Bell Labs to go to
Berkeley to continue work on the OS.

• By 1977, Berkeley had their own version of Unix, called "Berkeley Software Distribution" Unix, which
Bill Joy led (Joy later founded Sun Microsystems, and created vi, the precursor to vim. Joy was
actually the 16th employee at Sun, though he was given founder status, as Sun was an offshoot of a
Stanford student project).

• Other universities wanted copies, so Berkeley sent them out, and kept improving on their version.
• BSD kept improving, with new releases over the years, and eventually had versions superior in many

ways than AT&T's versions. The licenses also caused some legal trouble in the 1980s and 1990s.
• BSD Unix had many descendants, including Sun's OSs, NeXT's OS, FreeBSD, and Darwin, which is

the core of the MacOS system. Yes, the Mac operating system is a true Unix OS.

Unix Standardization
• In the late 1980s, the IEEE decided to create standards for operating

systems to maintain compatibility. This was called the Portable Operating
System Interface, or POSIX. Unix was selected as the basis for the system,
which includes the Standard C library (all of the functions we have come to
love this quarter!)

• Unix versions can be granted "POSIX certification," and MacOS is one of the
few big names that has this designation. Linux and Android are listed as
"mostly POSIX-compliant."

• Unix was originally written in assembly language, but in 1973, it was re-
written (by Dennis Ritchie) in the C language, making it much more portable
(though there are still many low-level parts of all OSs that must still be written
in assembly)

https://en.wikipedia.org/wiki/POSIX#Mostly_POSIX-compliant
https://en.wikipedia.org/wiki/POSIX#Mostly_POSIX-compliant

The Birth of Linux
• In 1984, Unix was still a proprietary product.
• A programmer, hacker, and developer of the most popular version of Emacs

(and parrot aficionado, but don't buy one for him!) at the MIT AI Laboratory,
Richard Stallman decided that he wanted to make a completely open source
and free Unix-compatible system.

• In 1985, Stallman published his GNU Manifesto encouraging the support for
his free "GNU is Not Unix" operating system (and yes, GNU is recursively
defined).

• Stallman is one of the world's most strident supporters of free (as in beer)
software. He has promoted the idea of copyleft, which uses ideas from
copyright law to preserve the use of free software. He also wrote the GNU
General Public License (GPL), which is used for many pieces of free
software.

• Stallman is famously eccentric — his website is worth a look.
• Stallman and others built the GNU operating system in the late 1980s, and by the early 1990s, it

was mostly complete, except for the "hard" parts, which mostly meant the kernel, or the main,
underlying code.

https://groups.google.com/a/mysociety.org/g/mysociety-community/c/zkyZpOXjgoQ/m/_8xyXSxv9zYJ
https://en.wikipedia.org/wiki/Richard_Stallman#Harvard_University_and_MIT
https://en.wikipedia.org/wiki/GNU_Manifesto
https://opensource.stackexchange.com/a/638
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://stallman.org

Linus Torvalds, and Linux
• Another Unix clone, called MINIX was developed by Andrew S. Tanenbaum

as an academic version of Unix, though it was minimal in its implementation.
It was also open source, but the licensing did not make it free software.

• In 1990, Linus Torvalds, a student studying at the University of Helsinki
enrolled in a Unix course. The course used a textbook written by
Tanenbaum, and it included a copy of MINIX. But, the licensing frustrated
him, and he decided to start working on his own OS kernel, which eventually
became the Linux kernel.

• Torvalds's paired his kernel with GNU applications, and switched the license
he created for it to the GNU General Purpose License. With outreach on
Internet message boards (this was still before the World Wide Web!), more
developers came onboard, and the OS started taking off. After an original
name of "Freax," Torvalds was convinced by others to change the name to
Linux, even though he thought it was egotistical.

• In the mid-1990s, Linux use started to take off, primarily on

Linux, Supercomputers, Servers, and Desktops
• In the mid-1990s, Linux use started to take off, primarily

on supercomputers. NASA started using Linux on
clusters of computers, replacing their giant mainframes.
Other companies started to do the same.

• These days, virtually all supercomputers use Linux
operating systems.

• Microsoft had the market for desktop computing
basically cornered, but with the lure of a free OS,
companies such as Hewlett-Packard and Dell started
supporting Linux on their machines.

• Linux is also used on many other devices, including all Android phones (Android is a Linux OS),
and in embedded systems, and tablets. There is also SteamOS, which is a game-oriented Linux
distribution.

• Linux has been ported to almost all computers (including on 1980s 8-bit computers like the
Commodore 64). It is famous for having versions that run on older hardware (particularly x86
hardware), keeping old computers in service much longer than anticipated.

Linux Distributions
• There are hundreds of distributions of Linux in the

world today, and some are very popular.
• The myth cluster uses Ubuntu, as do many of the

other servers as Stanford.
• It is easy (and free) to install a virtual Linux

machine on many operating systems (e.g.,
Windows and MacOS), and it is easy to start
playing around with it.

• You can find a nice video about the making of
Linux here: https://www.youtube.com/watch?
v=s7u7jBwIocU

https://www.youtube.com/watch?v=s7u7jBwIocU
https://www.youtube.com/watch?v=s7u7jBwIocU
https://www.youtube.com/watch?v=s7u7jBwIocU

