
Friday, March 15, 2024

Computer Systems

Winter 2024

Stanford University

Computer Science Department

Reading: Reader: Ch 8, Pointers, Generic functions
with void *, and Pointers to Functions, K&R Ch 1.6,
5.6-5.9

Lecturer: Chris Gregg

1

CS 107
Lecture 28: Review and
the void *: Generic stack typedef struct node {

 struct node *next;
 void *data;
} node;

typedef struct stack {
 int elem_size_bytes;
 int nelems;
 node *top;
} stack;

2

Today's Topics

• Logistics
• Final Exam on Monday, 3:30pm-6:30pm, CEMEX

• Review: Let's build a generic stack, void *

3

Review: Building a generic stack
Let's build a generic stack. We are going to be using structs extensively for this
example, and they are fair game for the final exam. So, make sure you understand
this example!

First, let's remind ourselves what the stack data structure does (back to CS 106B!):
1. A stack is a last-in-first-out data structure that can store elements. The first

element in the stack is the last element out of the stack.
2. The push operation adds an element onto the stack
3. The pop operation removes an element from the stack.

Note, we are not talking about the program stack, but a generic version of the stack
abstract data type!

Code at: /afs/ir/class/cs107/lecture-code/lect28

4

Example: Building a generic stack
Let's build a generic stack. We are going to be using structs extensively for this
example, and they are fair game for the final exam. So, make sure you understand
this example!

We'll start by defining a node that will hold a pointer to a "next" node, and some
data:

typedef struct node {
 struct node *next;
 void *data;
} node;

A note on syntax: We are defining a type
here (thus, typedef), and we are defining
a node to be a "struct node". This is
different from C++, where we can just
define a struct and use its name. In C,
without the typedef, we would constantly
have to be referring to "struct node"
every time we wanted to use it. We often
do this in C, but having a typedef is nice.

5

Example: Building a generic stack
We'll start by defining a node that will hold a pointer to a "next" node, and some
data:

typedef struct node {
 struct node *next;
 void *data;
} node;

We don't know anything about the type of
thing that data will point to, although the
stack itself will know its width.

6

Example: Building a generic stack
Next, let's build the stack type. It will have a defined width for each node, and it
will also keep track of how many elements it holds. It will also keep track of the top
of the stack. Again, we want to typedef it so we don't have to continually say
"struct stack" when we want to use it.

typedef struct stack {
 int width;
 int nelems;
 node *top;
} stack;

Remember, a node is generic, so this
stack can hold any type, although once it
has a width defined, all elements you push
must have that width.

7

Example: Building a generic stack
How do we create a default stack? We could do it manually:

stack *s = stack_create(...);

But let's create a function for it, in which case we should use a pointer:

 stack s1;
 s1.width = sizeof(int); // store ints
 s1.nelems = 0;
 s1.top = NULL;

8

Example: Building a generic stack
Our stack creation function:

Let's investigate...

stack *stack_create(int width)
{
 stack *s = malloc(sizeof(stack));
 s->width = width;
 s->nelems = 0;
 s->top = NULL;
 return s;
}

9

Example: Building a generic stack
Our stack creation function:

A particular stack
must have a set width
(otherwise, we would
have to pass in the
width each time, and
this doesn't make
sense for pop -- we
wouldn't know what
type we were popping
off!)

stack *stack_create(int width)
{
 stack *s = malloc(sizeof(stack));
 s->width = width;
 s->nelems = 0;
 s->top = NULL;
 return s;
}

10

Example: Building a generic stack
Our stack creation function:

Get enough memory
from the heap to
create the stack.

stack *stack_create(int width)
{
 stack *s = malloc(sizeof(stack));
 s->width = width;
 s->nelems = 0;
 s->top = NULL;
 return s;
}

11

Example: Building a generic stack
Our stack creation function:

Set the initial
conditions.

stack *stack_create(int width)
{
 stack *s = malloc(sizeof(stack));
 s->width = width;
 s->nelems = 0;
 s->top = NULL;
 return s;
}

12

Example: Building a generic stack
Our stack creation function:

Return the pointer to
the memory we just
requested and
initialized.

stack *stack_create(int width)
{
 stack *s = malloc(sizeof(stack));
 s->width = width;
 s->nelems = 0;
 s->top = NULL;
 return s;
}

13

Example: Building a generic stack
Let's look at our push function:

void stack_push(stack *s, const void *data)
{
 node *new_node = malloc(sizeof(node));
 new_node->data = malloc(s->width);
 memcpy(new_node->data, data, s->width);

 new_node->next = s->top;
 s->top = new_node;
 s->nelems++;
}

14

Example: Building a generic stack
Let's look at our push function:

The stack function takes a stack as a parameter! The stack isn't an object, and it
doesn't have functions built in. If we really wanted to, we could create a stack struct that
has function pointers, but that is more advanced. A pointer to the data is also required.

void stack_push(stack *s, const void *data)
{
 node *new_node = malloc(sizeof(node));
 new_node->data = malloc(s->width);
 memcpy(new_node->data,data,s->width);

 new_node->next = s->top;
 s->top = new_node;
 s->nelems++;
}

15

Example: Building a generic stack
Let's look at our push function:

Each time we add an element to the stack, we need to create a node, and we get that
off the heap, too.

void stack_push(stack *s, const void *data)
{
 node *new_node = malloc(sizeof(node));
 new_node->data = malloc(s->width);
 memcpy(new_node->data,data,s->width);

 new_node->next = s->top;
 s->top = new_node;
 s->nelems++;
}

16

Example: Building a generic stack
Let's look at our push function:

Guess what? We also have to use heap memory to store the data! We are making a
copy of the data, not just pointing to it!

void stack_push(stack *s, const void *data)
{
 node *new_node = malloc(sizeof(node));
 new_node->data = malloc(s->width);
 memcpy(new_node->data,data,s->width);

 new_node->next = s->top;
 s->top = new_node;
 s->nelems++;
}

17

Example: Building a generic stack
Let's look at our push function:

We copy the data pointed to into our node. This could be anything, but we know the
width. If it is a pointer, we'll copy the pointer, but it could be integer data, or any other
kind of data.

void stack_push(stack *s, const void *data)
{
 node *new_node = malloc(sizeof(node));
 new_node->data = malloc(s->width);
 memcpy(new_node->data, data, s->width);

 new_node->next = s->top;
 s->top = new_node;
 s->nelems++;
}

18

Example: Building a generic stack
Let's look at our push function:

We have to do some wiring here (kind of like linked lists). We are inserting this node
before the top of the stack.

void stack_push(stack *s, const void *data)
{
 node *new_node = malloc(sizeof(node));
 new_node->data = malloc(s->width);
 memcpy(new_node->data, data, s->width);

 new_node->next = s->top;
 s->top = new_node;
 s->nelems++;
}

19

Example: Building a generic stack
Let's look at our push function:

Don't forget to update the number of elements.

void stack_push(stack *s, const void *data)
{
 node *new_node = malloc(sizeof(node));
 new_node->data = malloc(s->width);
 memcpy(new_node->data, data, s->width);

 new_node->next = s->top;
 s->top = new_node;
 s->nelems++;
}

20

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of returning a pointer -- this preserves the encapsulation of our data.

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

21

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of returning a pointer -- this preserves the encapsulation of our data.

Let's return a boolean value to say
whether or not we had an element to
return. In other words, if the stack is
empty, return false; otherwise, return
true.

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

22

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of retiring a pointer -- this preserves the encapsulation of our data.

Again, pop has a stack argument, and a
pointer to a memory location to hold the
data we are going to copy.

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

23

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of retiring a pointer -- this preserves the encapsulation of our data.

Check to see if the stack is empty.bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

24

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of retiring a pointer -- this preserves the encapsulation of our data.

Might as well create a temporary pointer
so we don't have to do a bunch of
double "->" references.

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

25

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of retiring a pointer -- this preserves the encapsulation of our data.

We'll copy the data back to the memory
location we were provided.

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

26

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of retiring a pointer -- this preserves the encapsulation of our data.

Re-wiring is pretty easy -- the top is now
just the next element in the stack.

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

27

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of retiring a pointer -- this preserves the encapsulation of our data.

We have to clean up. First, we free the
data (remember, we malloc'd it originally!)

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

28

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of retiring a pointer -- this preserves the encapsulation of our data.

Then, we free the node itself (because
we malloc'd it!)

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

29

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of retiring a pointer -- this preserves the encapsulation of our data.

Don't forget to decrement the number of
elements!

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

30

Example: Building a generic stack
Let's look at our pop function. Pop will copy data back into a memory location we
give it, instead of retiring a pointer -- this preserves the encapsulation of our data.

We did have an element to return, so we
return true.

bool stack_pop(stack *s, void *addr)
{
 if (s->nelems == 0) {
 return false;
 }
 node *n = s->top;
 memcpy(addr, n->data, s->width);
 // rewire
 s->top = n->next;

 free(n->data);
 free(n);
 s->nelems--;
 return true;
}

31

Example: Building a generic stack
Now we can try it. Let's push on an array of ints, and then pop them all off:

int main(int argc, char **argv)
{
 // start with an int array
 int iarr[] = {0, 2, 4, 6, 8, 12345678, 24680};
 int nelems = sizeof(iarr) / sizeof(iarr[0]);

 stack *intstack = stack_create(sizeof(iarr[0]));
 for (int i=0; i < nelems; i++) {
 stack_push(intstack, iarr + i);
 }

 int popped_int;
 while (stack_pop(intstack, &popped_int)) {
 printf("%d\n", popped_int);
 }
 free(s); // clean up!
 return 0;
}

What is the size of each
element?

32

Example: Building a generic stack
Now we can try it. Let's push on an array of ints, and then pop them all off:

What is the size of each
element?

4

(because we will be storing
ints in the stack)

int main(int argc, char **argv)
{
 // start with an int array
 int iarr[] = {0, 2, 4, 6, 8, 12345678, 24680};
 int nelems = sizeof(iarr) / sizeof(iarr[0]);

 stack *intstack = stack_create(sizeof(iarr[0]));
 for (int i=0; i < nelems; i++) {
 stack_push(intstack, iarr + i);
 }

 int popped_int;
 while (stack_pop(intstack, &popped_int)) {
 printf("%d\n", popped_int);
 }
 free(s); // clean up!
 return 0;
}

33

Example: Building a generic stack
Now we can try it. Let's push on an array of ints, and then pop them all off:

$./stack
24680
12345678
8
6
4
2
0
7

int main(int argc, char **argv)
{
 // start with an int array
 int iarr[] = {0, 2, 4, 6, 8, 12345678, 24680};
 int nelems = sizeof(iarr) / sizeof(iarr[0]);

 stack *intstack = stack_create(sizeof(iarr[0]));
 for (int i=0; i < nelems; i++) {
 stack_push(intstack, iarr + i);
 }

 int popped_int;
 while (stack_pop(intstack, &popped_int)) {
 printf("%d\n", popped_int);
 }
 free(s); // clean up!
 return 0;
}

34

Example: Building a generic stack
Let's try and push one more int onto the stack (assume we do this before the call to
free:

int main(int argc, char **argv)
{
 ...
 int x = 42;
 stack_push(intstack, x);

Does this work? Recall:

void stack_push(stack *s, const void *data)

35

Example: Building a generic stack

Does this work? Recall:

void stack_push(stack *s, const void *data)

This does not work -- we need a pointer to x. So, we should do:

 stack_push(intstack, &x);

Let's try and push one more int onto the stack (assume we do this before the call to
free:

int main(int argc, char **argv)
{
 ...
 int x = 42;
 stack_push(intstack, x);

36

Example: Building a generic stack
Let's go ahead and use an array of char * pointers -- remember, our stack is generic,
and will work for any pointer! Let's push all the command line args onto the stack:
 stack *s = stack_create(sizeof(argv[0]));
 for (int i=1; i < argc; i++) {
 stack_push(s,argv+i);
 }

 char *next_arg;
 while (stack_pop(s,&next_arg)) {
 printf("%s\n",next_arg);
 }

We're pushing on all but the program name.

What is the size of each
element?

37

Example: Building a generic stack
Let's go ahead and use an array of char * pointers -- remember, our stack is generic,
and will work for any pointer! Let's push all the command line args onto the stack:
 stack *s = stack_create(sizeof(argv[0]));
 for (int i=1; i < argc; i++) {
 stack_push(s,argv+i);
 }

 char *next_arg;
 while (stack_pop(s,&next_arg)) {
 printf("%s\n",next_arg);
 }

We're pushing on all but the program name.

What is the size of each
element?

8

because the size of a
char * pointer is 8.

38

Example: Building a generic stack
Let's go ahead and use an array of char * pointers -- remember, our stack is generic,
and will work for any pointer! Let's push all the command line args onto the stack:
 stack *s = stack_create(sizeof(argv[0]));
 for (int i = 1; i < argc; i++) {
 stack_push(s, argv+i);
 }

 char *next_arg;
 while (stack_pop(s, &next_arg)) {
 printf("%s\n", next_arg);
 }

We're pushing on all but the program name.

$./stack here are
 some words
words
some
are
here

39

Example: Building a generic stack
Can we push on one more string?

...
string *h = "hello";

stack_push(s, h);

This should work, right? h is a pointer! Recall:
void stack_push(stack *s, const void *data)

40

Example: Building a generic stack
Can we push on one more string?

...
char *h = "hello";

stack_push(s, h);

This should work, right? h is a pointer! Recall:
void stack_push(stack *s, const void *data)

This doesn't work! We need a pointer to the memory we are pushing onto the
stack. We aren't pushing string characters, we are pushing a string pointer! So,
we need:
stack_push(s, &h); // &h is a char **

41

References and Advanced Reading

•References:
•K&R C Programming (from our course)
•Course Reader, C Primer
•Awesome C book: http://books.goalkicker.com/CBook
•Function Pointer tutorial: https://www.cprogramming.com/tutorial/function-
pointers.html

•Advanced Reading:
•virtual memory: https://en.wikipedia.org/wiki/Virtual_memory

http://books.goalkicker.com/CBook
https://www.cprogramming.com/tutorial/function-pointers.html
https://www.cprogramming.com/tutorial/function-pointers.html
https://en.wikipedia.org/wiki/Virtual_memory

42

Extra Slides

