1. Suppose the time that Java takes to sort a 1,000,000 length array is approximately $J \sim \mathcal{N}(\mu = 46, \sigma^2 = 6^2)$ milliseconds (ms), since it uses the (randomized) QuickSort Algorithm.
 a. Python initially implements a (deterministic) MergeSort Algorithm, and it always finishes in $P = 49$ ms. What is the probability that Java sorts a single 1,000,000 length array faster than Python does? Show your work and give your answer rounded to 4 decimal places.
 b. Python attempts to implement QuickSort as well, but did it less efficiently. Its runtime is approximately $P \sim \mathcal{N}(\mu = 55, \sigma^2 = 8^2)$. What is the probability that Java sorts a single 1,000,000 length array faster than Python does? Show your work and give your answer rounded to 4 decimal places.
 c. The remaining parts are left for you ☺.

2. Suppose $X \sim \text{Exp} \left(\lambda = \frac{1}{2} \right)$ is the waiting time in hours until your pizza delivery arrives, and suppose we decide to tip $Y = g(X) = \frac{24}{X+1}$ dollars.
 a. What is the range, PDF, and CDF of X? Hint: You can look this up.
 b. What is the range Ω_Y?
 c. Find $F_Y(y)$ using the CDF method, then find $f_Y(y)$ afterwards.
 d. Find $f_Y(y)$ using the explicit formula, after verifying the monotonicity and invertibility criteria.
 e. Set up integrals for $E[Y]$ in two ways: one with LOTUS and $f_X(x)$, and one with $f_Y(y)$. Explicitly define your limits of integration and the integrand so that one could enter your integral into WolframAlpha.